Dissipation in Non-Steady State Regulatory Circuits

In order to respond to environmental signals, cells often use small molecular circuits to transmit information about their surroundings. Recently, motivated by specific examples in signaling and gene regulation, a body of work has focused on the properties of circuits that function out of equilibrium and dissipate energy. We briefly review the probabilistic measures of information and dissipation and use simple models to discuss and illustrate trade-offs between information and dissipation in biological circuits. We find that circuits with non-steady state initial conditions can transmit more information at small readout delays than steady state circuits. The dissipative cost of this additional information proves marginal compared to the steady state dissipation. Feedback does not significantly increase the transmitted information for out of steady state circuits but does decrease dissipative costs. Lastly, we discuss the case of bursty gene regulatory circuits that, even in the fast switching limit, function out of equilibrium.

[1]  Gasper Tkacik,et al.  Optimizing information flow in small genetic networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Ilya Nemenman,et al.  Networks Information Transduction Capacity of Noisy Biochemical Signaling , 2011 .

[3]  Massimo Vergassola,et al.  Bacterial strategies for chemotaxis response , 2010, Proceedings of the National Academy of Sciences.

[4]  Yuhai Tu,et al.  The free energy cost of accurate biochemical oscillations , 2015, Nature Physics.

[5]  T. Kepler,et al.  Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. , 2001, Biophysical journal.

[6]  U. Alon An introduction to systems biology : design principles of biological circuits , 2019 .

[7]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[8]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[9]  T. McKeithan,et al.  Kinetic proofreading in T-cell receptor signal transduction. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[11]  David J Schwab,et al.  Energetic costs of cellular computation , 2012, Proceedings of the National Academy of Sciences.

[12]  Udo Seifert,et al.  Sensory capacity: An information theoretical measure of the performance of a sensor. , 2015, Physical review. E.

[13]  Pieter Rein ten Wolde,et al.  Prediction and Dissipation in Biochemical Sensing , 2013 .

[14]  Harel Weinstein,et al.  AIM for Allostery: Using the Ising Model to Understand Information Processing and Transmission in Allosteric Biomolecular Systems , 2015, Entropy.

[15]  Jacek Miȩkisz,et al.  Gene Expression in Self-repressing System with Multiple Gene Copies , 2013, Bulletin of mathematical biology.

[16]  Armen E. Allahverdyan,et al.  Thermodynamic efficiency of information and heat flow , 2009, 0907.3320.

[17]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[18]  J. Onuchic,et al.  Absolute rate theories of epigenetic stability. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[20]  Jordan M. Horowitz,et al.  Thermodynamics with Continuous Information Flow , 2014, 1402.3276.

[21]  F. Tostevin,et al.  Feed-forward loops and diamond motifs lead to tunable transmission of information in the frequency domain. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Andrea Puglisi,et al.  Irreversible effects of memory , 2009, 0907.5509.

[23]  G. Tkačik,et al.  Optimizing information flow in small genetic networks. IV. Spatial coupling. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Rob Phillips,et al.  SnapShot: Key Numbers in Biology , 2010, Cell.

[25]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[26]  A. C. Barato,et al.  Information-theoretic vs. thermodynamic entropy production in autonomous sensory networks , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  J. Tyson,et al.  Models in biology: lessons from modeling regulation of the eukaryotic cell cycle , 2015, BMC Biology.

[28]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[29]  Susanne Still,et al.  The thermodynamics of prediction , 2012, Physical review letters.

[30]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[31]  F. Tostevin,et al.  Effect of feedback on the fidelity of information transmission of time-varying signals. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Ursula Kummer,et al.  Information transfer in signaling pathways: A study using coupled simulated and experimental data , 2008, BMC Bioinformatics.

[33]  G. Augustine,et al.  A Positive Feedback Signal Transduction Loop Determines Timing of Cerebellar Long-Term Depression , 2008, Neuron.

[34]  Aleksandra M. Walczak,et al.  Trade-Offs in Delayed Information Transmission in Biochemical Networks , 2015, 1504.03637.

[35]  L. Tsimring,et al.  Accurate information transmission through dynamic biochemical signaling networks , 2014, Science.

[36]  Aleksandra M Walczak,et al.  3 minutes to precisely measure morphogen concentration , 2018, bioRxiv.

[37]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[38]  Nir Friedman,et al.  Linking stochastic dynamics to population distribution: an analytical framework of gene expression. , 2006, Physical review letters.

[39]  Pieter Rein ten Wolde,et al.  Energy dissipation and noise correlations in biochemical sensing. , 2014, Physical review letters.

[40]  Pieter Rein ten Wolde,et al.  Thermodynamics of Computational Copying in Biochemical Systems , 2015, 1503.00909.

[41]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[42]  Sebastian Goldt,et al.  Stochastic thermodynamics of learning , 2016, Physical review letters.

[43]  Udo Seifert,et al.  Thermodynamic uncertainty relation for biomolecular processes. , 2015, Physical review letters.

[44]  V. Hakim,et al.  Deriving structure from evolution: metazoan segmentation , 2007, Molecular systems biology.

[45]  F. Tostevin,et al.  Modeling the establishment of PAR protein polarity in the one-cell C. elegans embryo. , 2008, Biophysical journal.

[46]  Akademii︠a︡ medit︠s︡inskikh nauk Sssr Journal of physics , 1939 .

[47]  Tânia Tomé,et al.  Entropy production in nonequilibrium systems at stationary states. , 2012, Physical review letters.

[48]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[49]  W. Bialek,et al.  Information flow and optimization in transcriptional regulation , 2007, Proceedings of the National Academy of Sciences.

[50]  Sosuke Ito,et al.  Maxwell's demon in biochemical signal transduction with feedback loop , 2014, Nature Communications.

[51]  A. Walczak,et al.  Spectral solutions to stochastic models of gene expression with bursts and regulation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  J. Onuchic,et al.  Self-regulating gene: an exact solution. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Andre C. Barato,et al.  Efficiency of cellular information processing , 2014, 1405.7241.

[54]  Aleksandra M Walczak,et al.  Information transmission in genetic regulatory networks: a review , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[56]  Aleksandra M. Walczak,et al.  Optimizing Information Flow in Small Genetic Networks. II. Feed-forward Interactions , 2010 .

[57]  Amos Maritan,et al.  Entropy production for coarse-grained dynamics , 2018, New Journal of Physics.

[58]  Hernan G. Garcia,et al.  Transcriptional Regulation by the Numbers 2: Applications , 2004, q-bio/0412011.

[59]  M A Savageau,et al.  Design of molecular control mechanisms and the demand for gene expression. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[60]  I. Nemenman,et al.  Information Transduction Capacity of Noisy Biochemical Signaling Networks , 2011, Science.

[61]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[62]  Ned S Wingreen,et al.  Information processing and signal integration in bacterial quorum sensing , 2009, Molecular systems biology.

[63]  P. Wolynes,et al.  Self-consistent proteomic field theory of stochastic gene switches. , 2004, Biophysical journal.

[64]  R. Segev,et al.  GENERAL PROPERTIES OF THE TRANSCRIPTIONAL TIME-SERIES IN ESCHERICHIA COLI , 2011, Nature Genetics.

[65]  Rob Phillips,et al.  Quantitative dissection of the simple repression input–output function , 2011, Proceedings of the National Academy of Sciences.

[66]  Eric D. Siggia,et al.  Decisions on the fly in cellular sensory systems , 2013, Proceedings of the National Academy of Sciences.

[67]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Thomas E. Ouldridge,et al.  What we learn from the learning rate , 2017, 1702.06041.

[69]  Carol A Gross,et al.  A chaperone network controls the heat shock response in E. coli. , 2004, Genes & development.

[70]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[71]  Arunima Chaudhuri,et al.  Cell Biology by the Numbers , 2016, The Yale Journal of Biology and Medicine.

[72]  M Marsili,et al.  Time-dependent information transmission in a model regulatory circuit. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  Masahito Ueda,et al.  Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. , 2012, Physical review letters.

[74]  Yuhai Tu,et al.  The energy-speed-accuracy tradeoff in sensory adaptation , 2012, Nature Physics.

[75]  A. Crisanti,et al.  Nonequilibrium and information: the role of cross correlations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Carter Ratcliff 36 , 2012, The Hatak Witches.

[77]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[78]  Filipe Tostevin,et al.  A stochastic model of Min oscillations in Escherichia coli and Min protein segregation during cell division , 2005, Physical biology.

[79]  Massimiliano Esposito,et al.  Information Thermodynamics of Turing Patterns. , 2018, Physical review letters.

[80]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[81]  Harel Weinstein,et al.  The Allostery Landscape: Quantifying Thermodynamic Couplings in Biomolecular Systems , 2016, Journal of Chemical Theory and Computation.

[82]  S. Pigolotti,et al.  Erratum: Entropy production and coarse-graining in Markov processes , 2010, 1002.4520.

[83]  W. Bialek,et al.  Optimizing information flow in small genetic networks. II. Feed-forward interactions. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[85]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  BMC Biology , 2004 .

[87]  Jordan M. Horowitz,et al.  Thermodynamic Costs of Information Processing in Sensory Adaptation , 2014, PLoS Comput. Biol..

[88]  Marco Del Giudice,et al.  Thermodynamic limits to information harvesting by sensory systems , 2014, 1408.5128.

[89]  Robert G. Endres,et al.  Memory improves precision of cell sensing in fluctuating environments , 2014, Scientific Reports.

[90]  J. Ferrell,et al.  A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision , 2003, Nature.

[91]  Gašper Tkačik,et al.  Noise and information transmission in promoters with multiple internal States. , 2013, Biophysical journal.

[92]  Filipe Tostevin,et al.  Mutual information in time-varying biochemical systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  F. Tostevin,et al.  Mutual information between input and output trajectories of biochemical networks. , 2009, Physical review letters.

[94]  Gasper Tkacik,et al.  Positional information, in bits , 2010, Proceedings of the National Academy of Sciences.

[95]  Aleksandra M. Walczak,et al.  Precision of Readout at the hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos , 2016, PLoS Comput. Biol..

[96]  J. Ninio Kinetic amplification of enzyme discrimination. , 1975, Biochimie.

[97]  V. Hakim,et al.  Design of genetic networks with specified functions by evolution in silico. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[98]  John J. Tyson,et al.  Biochemical Oscillations , 2004 .

[99]  王丹,et al.  Plos Computational Biology主编关于论文获得发表的10条简单法则的评析 , 2009 .

[100]  Martin Howard,et al.  Morphogen profiles can be optimized to buffer against noise. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  P. R. ten Wolde,et al.  Fundamental Limits to Cellular Sensing , 2015, 1505.06577.

[102]  E. B. Wilson PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. , 1919, Science.