Texture Analysis by Accurate Identification of a Generic Markov-Gibbs Model

A number of applied problems are effectively solved with simple Markov-Gibbs random field (MGRF) models of spatially homogeneous or piecewise-homogeneous images provided that their identification (parameter estimation) is able to focus such a prior on a particular class of images. We propose more accurate analytical potential estimates for a generic MGRF with multiple pairwise pixel interaction and use them for structural analysis and synthesis of stochastic and periodic image textures.

[1]  Herbert Süße,et al.  Invariant Fitting of Planar Objects by Primitives , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[3]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[4]  Georgy L. Gimel'farb,et al.  Accurate Identification of a Markov-Gibbs Model for Texture Synthesis by Bunch Sampling , 2007, CAIP.

[5]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[7]  D. Schattschneider The Plane Symmetry Groups: Their Recognition and Notation , 1978 .

[8]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[9]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[10]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[12]  Luc Van Gool,et al.  A Compact Model for Viewpoint Dependent Texture Synthesis , 2000, SMILE.

[13]  Andrew Zisserman,et al.  Classifying Images of Materials: Achieving Viewpoint and Illumination Independence , 2002, ECCV.

[14]  Georgy L. Gimel'farb,et al.  Texture Modelling by Multiple Pairwise Pixel , 2008 .

[15]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[16]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[17]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[18]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Yanxi Liu,et al.  Deformable texture : the irregular-regular-irregular cycle , 2003 .

[20]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[21]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .

[22]  Baining Guo,et al.  Real-time texture synthesis by patch-based sampling , 2001, TOGS.

[23]  Yanxi Liu,et al.  The Promise and Perils of Near-Regular Texture , 2005, Int. J. Comput. Vis..

[24]  Song-Chun Zhu,et al.  What are Textons? , 2005, Int. J. Comput. Vis..

[25]  Anuj Srivastava,et al.  Universal Analytical Forms for Modeling Image Probabilities , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Georgy L. Gimel'farb,et al.  Non-Markov Gibbs texture model with multiple pairwise pixel interactions , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[27]  Georgy L. Gimel'farb,et al.  Image Textures and Gibbs Random Fields , 1999, Computational Imaging and Vision.