Calculation of molecular polarizabilities using an anisotropic atom point dipole interaction model which includes the effect of electron repulsion

The point dipole interaction model for molecular polarizability recently proposed by Applequist, Carl, and Fung is modified by replacing isotropic atomic point dipoles with anisotropic atomic point dipoles. The modified formalism, which is invariant to coordinate transformations, requires an additional empirical parameter for each atom type (ξA, the atomic anisotropy constant) and a single, global parameter applicable to all nonconjugated systems (κ, the repulsion exponent). The atomic polarizability tensor in the molecular environment is evaluated as a function of interatomic electron repulsion. This latter quantity is shown to be related to the degree to which bonding diminishes the polarizability of an atomic center in the direction (s) of the covalent bond (s). The anisotropic atom point dipole interaction model generates identical mean molecular polarizabilities as in the isotropic procedures of Applequist et al., while reducing the average error in the calculated molecular polarizability components ...

[1]  William H. Orttung,et al.  DIRECT SOLUTION OF THE POISSON EQUATION FOR BIOMOLECULES OF ARBITRARY SHAPE, POLARIZABILITY DENSITY, AND CHARGE DISTRIBUTION , 1977 .

[2]  J. Applequist,et al.  An atom dipole interaction model for molecular optical properties , 1977 .

[3]  J. Applequist,et al.  Calculation of Raman scattering parameters for methane and halomethanes from an atom dipole interaction model , 1977 .

[4]  J. Applequist,et al.  On the polarizability theory of optical rotation , 1973 .

[5]  David L. Beveridge,et al.  Approximate molecular orbital theory , 1970 .

[6]  A. Schweig,et al.  Calculation of excited singlet and triplet state polarizabilities using the CNDO/S CI method. An application to naphthalene , 1975 .

[7]  J. Pople,et al.  Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems , 1966 .

[8]  K. Sundberg An atom–dipole interaction theory of the hyperpolarizability contribution to the optical activity of molecules , 1978 .

[9]  L. C. Allen Quantum Theory of Structure and Dynamics , 1969 .

[10]  A. D. McLean,et al.  Higher Polarizabilities of Linear Molecules , 1967 .

[11]  J. Applequist,et al.  Dipole coupling effects of nonchromophoric groups in molecules on frequencies, dipole strengths, and rotational strengths of chromophoric groups , 1979 .

[12]  J. M. Sichel,et al.  Atomic parameters for semi-empirical SCF-LCAO-MO calculations , 1967 .

[13]  A. Schweig Dipole moments and polarizabilities in excited singlet states and the generalized Hellmann-Fernman theorem , 1969 .

[14]  A. Proutière,et al.  Molecular electrostatics. Quantitative prediction of molecular electrooptical properties. Application to alkanes and alkyl chlorides , 1978 .

[15]  L. Silberstein,et al.  VII. Molecular refractivity and atomic interaction , 1917 .

[16]  N. Hush,et al.  Finite-perturbation SCF valence-shell calculations of molecular polarizability and hyperpolarizability components , 1970 .

[17]  H. A. Stuart Die Struktur des Freien Moleküls , 1952 .

[18]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[19]  K. Sundberg,et al.  An atom monopole–dipole interaction model with charge transfer for the treatment of polarizabilities of π‐bonded molecules. , 1978 .