MATRICES OF CARBONACEOUS CHONDRITE METEORITES

The morphology, classification, and chemistry of the matrices of carbonaceous chondrite (CC) meteorites is reviewed based on recent research results. The various kinds of CCs are examined in terms of their matrix mineralogy. Alteration processes in CCs are discussed.

[1]  Stanley L. Miller,et al.  Production of Some Organic Compounds under Possible Primitive Earth Conditions1 , 1955 .

[2]  T. E. Bunch,et al.  Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .

[3]  F. Robert,et al.  Oxygen and hydrogen isotope relations in water and acid residues of carbonaceous chondrites , 1986 .

[4]  R. Clayton,et al.  Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites , 1983 .

[5]  Harry Y. McSween,et al.  Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .

[6]  S. Richardson,et al.  The composition of carbonaceous chondrite matrix , 1977 .

[7]  Brian S. Middleditch,et al.  Polycyclic aromatic hydrocarbons in the Murchison meteorite , 1984 .

[8]  P. Buseck,et al.  Electron Imaging of Pyrrhotite Superstructures , 1974, Science.

[9]  G. Boato THE ISOTOPIC COMPOSITION OF HYDROGEN AND CARBON IN THE CARBONACEOUS CHONDRITES , 1954 .

[10]  W. R. Schmus Mineralogy, Petrology, and Classification of Types 3 and 4 Carbonaceous Chondrites , 1969 .

[11]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[12]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[13]  J. Bada,et al.  Geochromatography on the parent body of the carbonaceous chondrite Ivuna , 1991 .

[14]  K. Tomeoka Phyllosilicate veins in a CI meteorite: evidence for aqueous alteration on the parent body , 1990, Nature.

[15]  A. Tielens,et al.  Shock processing of interstellar dust - Diamonds in the sky , 1987 .

[16]  G. Morfill,et al.  Accretionary Dust Mantles in CM Chondrites: Chemical Variations and Calculated Time Scales of Formation , 1991 .

[17]  P. Ramdohr The Opaque Minerals in Stony Meteorites , 1972 .

[18]  H. McSween,et al.  Cosmochemical implications of the physical processing of cometary nuclei , 1989 .

[19]  M. Prinz,et al.  CI chondrite-like clasts in the Nilpena polymict ureilite: Implications for aqueous alteration processes in CI chondrites , 1992 .

[20]  A. Rubin,et al.  The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites , 1991 .

[21]  N. Blair,et al.  Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite , 1984, Nature.

[22]  M. Zolensky,et al.  Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites , 1984, Nature.

[23]  John F. Kerridge,et al.  Meteorites and the early solar system , 1988 .

[24]  Harold C. Urey,et al.  Abundances of the elements , 1956 .

[25]  H. B. Wiik,et al.  The chemical composition of some stony meteorites , 1956 .

[26]  E. Anders,et al.  Origin of organic matter in early solar system—I. Hydrocarbons , 1968 .

[27]  P. Buseck,et al.  Graphitic carbon in the Allende meteorite: a microstructural study. , 1981, Science.

[28]  R N Zare,et al.  Spatially Resolved Organic Analysis of the Allende Meteorite , 1989, Science.

[29]  R. Winans,et al.  Phenolic Ethers in the Organic Polymer of the Murchison Meteorite , 1980, Science.

[30]  E. Scott,et al.  Matrix material in type 3 chondrites - Occurrence, heterogeneity and relationship with chondrules , 1984 .

[31]  E. Anders,et al.  Chemical Evolution of the Carbonaceous Chondrites , 1962 .

[32]  E. Jarosewich,et al.  The Allende, Mexico, meteorite shower , 1971 .

[33]  D. J. Barber,et al.  Primitive material surviving in chondrites - Matrix , 1988 .

[34]  P. Buseck,et al.  Serpentine Minerals: Intergrowths and New Combination Structures , 1979, Science.

[35]  G. Huss,et al.  Interstellar Diamonds and Silicon Carbide in Enstatite Chondrites , 1990 .

[36]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[37]  M. Zolensky Mineralogy and matrix composition of CR chondrites Renazzo and EET 87770, and ungrouped chondrites Essebi and MAC 87300 , 1991 .

[38]  A. Rubin,et al.  Lewis Cliff 85332: A unique carbonaceous chondrite , 1990 .

[39]  R. Clayton,et al.  Oxygen Isotope Classification of Carbonaceous Chondrites , 1989 .

[40]  I. Mackinnon,et al.  Layer silicates in a chondritic porous interplanetary dust particle , 1985 .

[41]  R. Zare,et al.  Application of Two-Step Laser Mass Spectrometry to Cosmogeochemistry: Direct Analysis of Meteorites , 1988, Science.

[42]  H. Suess Zur Chemie der Planeten‐ und Meteoritenbildung , 1949 .

[43]  J. Wood Chondrites - Their metallic minerals, thermal histories, and parent planets. , 1967 .

[44]  E. Anders Noble gases in meteorites: evidence for presolar matter and superheavy elements , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[45]  A. Heuer,et al.  Allende Meteorite: A High-Voltage Electron Petrographic Study , 1971, Science.

[46]  S. Epstein,et al.  Interstellar organic matter in meteorites , 1983 .

[47]  P. Buseck,et al.  Calcic Micas in the Allende Meteorite: Evidence for Hydration Reactions in the Early Solar Nebula , 1991, Science.

[48]  J. Hayes,et al.  Chemical and petrographic correlations among carbonaceous chondrites , 1974 .

[49]  M. Schulte,et al.  Summary and implications of reported amino acid concentrations in the Murchison meteorite , 1990, Geochimica et cosmochimica acta.

[50]  M. Zolensky,et al.  Mineralogical Variations within the Matrices of CM Carbonaceous Chondrites , 1987 .

[51]  D. J. Barber,et al.  Fe-Ni-S-O layer phase in C2M carbonaceous chondrites—a hydrous sulphide? , 1983, Nature.

[52]  E. Anders,et al.  Condensation time of the solar nebula from extinct I in primitive meteorites. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Gary R. Huss,et al.  Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism , 1990, Nature.

[54]  H. McSween,et al.  Mineralogical alteration of CM carbonaceous chondrites: A view , 1989 .

[55]  E. Anders,et al.  Interstellar SiC in the Murchison and Murray meteorites - Isotopic composition of Ne, Xe, Si, C, and N , 1989 .

[56]  E. Anders,et al.  Isotopically anomalous xenon in meteorites - A new clue to its origin , 1981 .

[57]  Sherwood Chang,et al.  Carbonaceous chondrites—I. Characterization and significance of carbonaceous chondrite (CM) xenoliths in the Jodzie howardite , 1979 .

[58]  K. Keil,et al.  The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites , 1981 .

[59]  S. Pizzarello,et al.  Amino acids of the Murchison meteorite. III. Seven carbon acyclic primary alpha-amino alkanoic acids. , 1986, Geochimica et cosmochimica acta.

[60]  P. Buseck,et al.  Hydrated interplanetary dust particle linked with carbonaceous chondrites? , 1985, Nature.

[61]  B. Fegley,et al.  A refractory inclusion in the Kaba CV3 chondrite: some implications for the origin of spinel-rich objects in chondrites , 1985 .

[62]  A. Rubin,et al.  The Ningqiang Meteorite: Classification and Petrology of an Anomalous CV Chondrite , 1988 .

[63]  J. Cronin Origin of organic compounds in carbonaceous chondrites. , 1989, Advances in Space Research.

[64]  E. Anders,et al.  Purines and triazines in the Murchison meteorite , 1975 .

[65]  E. Anders,et al.  Isotopic anomalies of Ne, Xe, and C in meteorites. II - Interstellar diamond and SiC: Carriers of exotic noble gases. III - Local and exotic noble gas components and their interrelations , 1988 .

[66]  Peter R. Buseck,et al.  Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .

[67]  S. Richardson VEIN FORMATION IN THE C1 CARBONACEOUS CHONDRITES , 1978 .

[68]  A. Cameron Elemental and Nuclidic Abundances in the Solar System , 1982 .

[69]  John M. Hayes,et al.  Organic constituents of meteorites - A review. , 1967 .

[70]  P. Fraundorf,et al.  Evidence for interstellar SiC in the Murray carbonaceous meteorite , 1987, Nature.

[71]  G. Wasserburg,et al.  The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates , 1981 .

[72]  Samuel A. Bowring,et al.  The Acasta gneisses: remnant of Earth's early crust. , 1990 .

[73]  T. Wdowiak,et al.  Presence of a superparamagnetic component in the Orgueil meteorite , 1984, Nature.

[74]  C. Pillinger,et al.  Interstellar Carbon in Meteorites , 1983, Science.

[75]  C. Sagan,et al.  Red clouds in reducing atmospheres , 1973 .

[76]  W. Meinschein,et al.  AQUEOUS, LOW TEMPERATURE ENVIRONMENT OF THE ORGUEIL METEORITE PARENT BODY , 1963, Annals of the New York Academy of Sciences.

[77]  D. J. Barber Phyllosilicates and other layer-structured materials in stony meteorites , 1985, Clay Minerals.

[78]  J. Kerridge Correlation between nickel and sulfur abundances in Orgueil phyllosilicates , 1977 .

[79]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[80]  R. Clayton,et al.  A classification of meteorites based on oxygen isotopes , 1976 .

[81]  E. Anders,et al.  Interstellar Grains in Meteorites: Diamond and Silicon Carbide , 1989 .

[82]  G. Yuen,et al.  Aliphatic amines in the Murchison meteorite , 1976, Nature.

[83]  Bruce Fegley,et al.  Solar nebula chemistry: origins of planetary, satellite and cometary volatiles , 1989 .

[84]  H. McSween,et al.  Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .

[85]  P. Buseck,et al.  Intergrown mica and montmorillonite in the Allende carbonaceous chondrite , 1982, Nature.

[86]  F. Begemann Isotopic anomalies in meteorites , 1980 .

[87]  D. Mckay,et al.  Transmission electron microscopy of an interplanetary dust particle with links to CI chondrites , 1992 .

[88]  S. Richardson,et al.  Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites , 1978 .

[89]  J. Kerridge Major element composition of phyllosilicates in the Orgueil carbonaceous meteorite , 1976 .

[90]  Dale P. Cruikshank,et al.  Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets , 1988 .

[91]  J. Kerridge Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.

[92]  C. Pillinger,et al.  Isotopic anomalies of Ne, Xe, and C in meteorites. I. Separation of carriers by density and chemical resistance , 1988 .

[93]  F. Fanale,et al.  Surface properties of the Orgueil meteorite: implications for the early history of solar system volatiles , 1974 .

[94]  C. Pillinger,et al.  The stable isotopic composition of carbon, nitrogen and hydrogen in some Yamato meteorites , 1983 .

[95]  S. Pizzarello,et al.  Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite , 1987, Nature.

[96]  R. Cohen,et al.  Mineralogy and petrology of chondrules and inclusions in the Mokoia CV3 chondrite , 1983 .

[97]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[98]  D. Brownlee,et al.  An Interplanetary Dust Particle Linked Directly to Type CM Meteorites and an Asteroidal Origin , 1991, Science.

[99]  R Shipp,et al.  Isotopic characterisation of kerogen-like material in the Murchison carbonaceous chondrite. , 1987, Geochimica et cosmochimica acta.

[100]  R. Clayton,et al.  Oxygen isotopic compositions of several Antarctic meteorites , 1987 .

[101]  E. Steel,et al.  Interstellar diamonds in meteorites , 1987, Nature.

[102]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .