MATRICES OF CARBONACEOUS CHONDRITE METEORITES
暂无分享,去创建一个
[1] Stanley L. Miller,et al. Production of Some Organic Compounds under Possible Primitive Earth Conditions1 , 1955 .
[2] T. E. Bunch,et al. Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .
[3] F. Robert,et al. Oxygen and hydrogen isotope relations in water and acid residues of carbonaceous chondrites , 1986 .
[4] R. Clayton,et al. Oxygen isotopic compositions of chondrules in Allende and ordinary chondrites , 1983 .
[5] Harry Y. McSween,et al. Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix , 1979 .
[6] S. Richardson,et al. The composition of carbonaceous chondrite matrix , 1977 .
[7] Brian S. Middleditch,et al. Polycyclic aromatic hydrocarbons in the Murchison meteorite , 1984 .
[8] P. Buseck,et al. Electron Imaging of Pyrrhotite Superstructures , 1974, Science.
[9] G. Boato. THE ISOTOPIC COMPOSITION OF HYDROGEN AND CARBON IN THE CARBONACEOUS CHONDRITES , 1954 .
[10] W. R. Schmus. Mineralogy, Petrology, and Classification of Types 3 and 4 Carbonaceous Chondrites , 1969 .
[11] N. Grevesse,et al. Abundances of the elements: Meteoritic and solar , 1989 .
[12] P. Buseck,et al. Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .
[13] J. Bada,et al. Geochromatography on the parent body of the carbonaceous chondrite Ivuna , 1991 .
[14] K. Tomeoka. Phyllosilicate veins in a CI meteorite: evidence for aqueous alteration on the parent body , 1990, Nature.
[15] A. Tielens,et al. Shock processing of interstellar dust - Diamonds in the sky , 1987 .
[16] G. Morfill,et al. Accretionary Dust Mantles in CM Chondrites: Chemical Variations and Calculated Time Scales of Formation , 1991 .
[17] P. Ramdohr. The Opaque Minerals in Stony Meteorites , 1972 .
[18] H. McSween,et al. Cosmochemical implications of the physical processing of cometary nuclei , 1989 .
[19] M. Prinz,et al. CI chondrite-like clasts in the Nilpena polymict ureilite: Implications for aqueous alteration processes in CI chondrites , 1992 .
[20] A. Rubin,et al. The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites , 1991 .
[21] N. Blair,et al. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite , 1984, Nature.
[22] M. Zolensky,et al. Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites , 1984, Nature.
[23] John F. Kerridge,et al. Meteorites and the early solar system , 1988 .
[24] Harold C. Urey,et al. Abundances of the elements , 1956 .
[25] H. B. Wiik,et al. The chemical composition of some stony meteorites , 1956 .
[26] E. Anders,et al. Origin of organic matter in early solar system—I. Hydrocarbons , 1968 .
[27] P. Buseck,et al. Graphitic carbon in the Allende meteorite: a microstructural study. , 1981, Science.
[28] R N Zare,et al. Spatially Resolved Organic Analysis of the Allende Meteorite , 1989, Science.
[29] R. Winans,et al. Phenolic Ethers in the Organic Polymer of the Murchison Meteorite , 1980, Science.
[30] E. Scott,et al. Matrix material in type 3 chondrites - Occurrence, heterogeneity and relationship with chondrules , 1984 .
[31] E. Anders,et al. Chemical Evolution of the Carbonaceous Chondrites , 1962 .
[32] E. Jarosewich,et al. The Allende, Mexico, meteorite shower , 1971 .
[33] D. J. Barber,et al. Primitive material surviving in chondrites - Matrix , 1988 .
[34] P. Buseck,et al. Serpentine Minerals: Intergrowths and New Combination Structures , 1979, Science.
[35] G. Huss,et al. Interstellar Diamonds and Silicon Carbide in Enstatite Chondrites , 1990 .
[36] Mitsuru Ebihara,et al. Solar-system abundances of the elements , 1982 .
[37] M. Zolensky. Mineralogy and matrix composition of CR chondrites Renazzo and EET 87770, and ungrouped chondrites Essebi and MAC 87300 , 1991 .
[38] A. Rubin,et al. Lewis Cliff 85332: A unique carbonaceous chondrite , 1990 .
[39] R. Clayton,et al. Oxygen Isotope Classification of Carbonaceous Chondrites , 1989 .
[40] I. Mackinnon,et al. Layer silicates in a chondritic porous interplanetary dust particle , 1985 .
[41] R. Zare,et al. Application of Two-Step Laser Mass Spectrometry to Cosmogeochemistry: Direct Analysis of Meteorites , 1988, Science.
[42] H. Suess. Zur Chemie der Planeten‐ und Meteoritenbildung , 1949 .
[43] J. Wood. Chondrites - Their metallic minerals, thermal histories, and parent planets. , 1967 .
[44] E. Anders. Noble gases in meteorites: evidence for presolar matter and superheavy elements , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[45] A. Heuer,et al. Allende Meteorite: A High-Voltage Electron Petrographic Study , 1971, Science.
[46] S. Epstein,et al. Interstellar organic matter in meteorites , 1983 .
[47] P. Buseck,et al. Calcic Micas in the Allende Meteorite: Evidence for Hydration Reactions in the Early Solar Nebula , 1991, Science.
[48] J. Hayes,et al. Chemical and petrographic correlations among carbonaceous chondrites , 1974 .
[49] M. Schulte,et al. Summary and implications of reported amino acid concentrations in the Murchison meteorite , 1990, Geochimica et cosmochimica acta.
[50] M. Zolensky,et al. Mineralogical Variations within the Matrices of CM Carbonaceous Chondrites , 1987 .
[51] D. J. Barber,et al. Fe-Ni-S-O layer phase in C2M carbonaceous chondrites—a hydrous sulphide? , 1983, Nature.
[52] E. Anders,et al. Condensation time of the solar nebula from extinct I in primitive meteorites. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[53] Gary R. Huss,et al. Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism , 1990, Nature.
[54] H. McSween,et al. Mineralogical alteration of CM carbonaceous chondrites: A view , 1989 .
[55] E. Anders,et al. Interstellar SiC in the Murchison and Murray meteorites - Isotopic composition of Ne, Xe, Si, C, and N , 1989 .
[56] E. Anders,et al. Isotopically anomalous xenon in meteorites - A new clue to its origin , 1981 .
[57] Sherwood Chang,et al. Carbonaceous chondrites—I. Characterization and significance of carbonaceous chondrite (CM) xenoliths in the Jodzie howardite , 1979 .
[58] K. Keil,et al. The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites , 1981 .
[59] S. Pizzarello,et al. Amino acids of the Murchison meteorite. III. Seven carbon acyclic primary alpha-amino alkanoic acids. , 1986, Geochimica et cosmochimica acta.
[60] P. Buseck,et al. Hydrated interplanetary dust particle linked with carbonaceous chondrites? , 1985, Nature.
[61] B. Fegley,et al. A refractory inclusion in the Kaba CV3 chondrite: some implications for the origin of spinel-rich objects in chondrites , 1985 .
[62] A. Rubin,et al. The Ningqiang Meteorite: Classification and Petrology of an Anomalous CV Chondrite , 1988 .
[63] J. Cronin. Origin of organic compounds in carbonaceous chondrites. , 1989, Advances in Space Research.
[64] E. Anders,et al. Purines and triazines in the Murchison meteorite , 1975 .
[65] E. Anders,et al. Isotopic anomalies of Ne, Xe, and C in meteorites. II - Interstellar diamond and SiC: Carriers of exotic noble gases. III - Local and exotic noble gas components and their interrelations , 1988 .
[66] Peter R. Buseck,et al. Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .
[67] S. Richardson. VEIN FORMATION IN THE C1 CARBONACEOUS CHONDRITES , 1978 .
[68] A. Cameron. Elemental and Nuclidic Abundances in the Solar System , 1982 .
[69] John M. Hayes,et al. Organic constituents of meteorites - A review. , 1967 .
[70] P. Fraundorf,et al. Evidence for interstellar SiC in the Murray carbonaceous meteorite , 1987, Nature.
[71] G. Wasserburg,et al. The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates , 1981 .
[72] Samuel A. Bowring,et al. The Acasta gneisses: remnant of Earth's early crust. , 1990 .
[73] T. Wdowiak,et al. Presence of a superparamagnetic component in the Orgueil meteorite , 1984, Nature.
[74] C. Pillinger,et al. Interstellar Carbon in Meteorites , 1983, Science.
[75] C. Sagan,et al. Red clouds in reducing atmospheres , 1973 .
[76] W. Meinschein,et al. AQUEOUS, LOW TEMPERATURE ENVIRONMENT OF THE ORGUEIL METEORITE PARENT BODY , 1963, Annals of the New York Academy of Sciences.
[77] D. J. Barber. Phyllosilicates and other layer-structured materials in stony meteorites , 1985, Clay Minerals.
[78] J. Kerridge. Correlation between nickel and sulfur abundances in Orgueil phyllosilicates , 1977 .
[79] J F Kerridge,et al. Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.
[80] R. Clayton,et al. A classification of meteorites based on oxygen isotopes , 1976 .
[81] E. Anders,et al. Interstellar Grains in Meteorites: Diamond and Silicon Carbide , 1989 .
[82] G. Yuen,et al. Aliphatic amines in the Murchison meteorite , 1976, Nature.
[83] Bruce Fegley,et al. Solar nebula chemistry: origins of planetary, satellite and cometary volatiles , 1989 .
[84] H. McSween,et al. Water and the thermal evolution of carbonaceous chondrite parent bodies , 1989 .
[85] P. Buseck,et al. Intergrown mica and montmorillonite in the Allende carbonaceous chondrite , 1982, Nature.
[86] F. Begemann. Isotopic anomalies in meteorites , 1980 .
[87] D. Mckay,et al. Transmission electron microscopy of an interplanetary dust particle with links to CI chondrites , 1992 .
[88] S. Richardson,et al. Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites , 1978 .
[89] J. Kerridge. Major element composition of phyllosilicates in the Orgueil carbonaceous meteorite , 1976 .
[90] Dale P. Cruikshank,et al. Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets , 1988 .
[91] J. Kerridge. Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. , 1985, Geochimica et cosmochimica acta.
[92] C. Pillinger,et al. Isotopic anomalies of Ne, Xe, and C in meteorites. I. Separation of carriers by density and chemical resistance , 1988 .
[93] F. Fanale,et al. Surface properties of the Orgueil meteorite: implications for the early history of solar system volatiles , 1974 .
[94] C. Pillinger,et al. The stable isotopic composition of carbon, nitrogen and hydrogen in some Yamato meteorites , 1983 .
[95] S. Pizzarello,et al. Unusual stable isotope ratios in amino acid and carboxylic acid extracts from the Murchison meteorite , 1987, Nature.
[96] R. Cohen,et al. Mineralogy and petrology of chondrules and inclusions in the Mokoia CV3 chondrite , 1983 .
[97] R. Clayton,et al. The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .
[98] D. Brownlee,et al. An Interplanetary Dust Particle Linked Directly to Type CM Meteorites and an Asteroidal Origin , 1991, Science.
[99] R Shipp,et al. Isotopic characterisation of kerogen-like material in the Murchison carbonaceous chondrite. , 1987, Geochimica et cosmochimica acta.
[100] R. Clayton,et al. Oxygen isotopic compositions of several Antarctic meteorites , 1987 .
[101] E. Steel,et al. Interstellar diamonds in meteorites , 1987, Nature.
[102] L. Fuchs,et al. Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .