Visual Observables and Invariance

This paper presents the visual measurement of physical object properties that characterize the perceived object including: size, shape, surface properties, cover reflectance properties, distance, and motion. We provide an overview of complete set of local spatial, spectral and temporal measurements. From local visual measurements and a physical model of the visual stimulus formation, we derive complete sets of photometric, geometrical, and temporal invariants to counteract unwanted transformations in the observation including: illumination spectrum and intensity, scene setting causing shadow, shading and highlight effects, and variation due to object position, pose and distance. Experiments show the different invariants to be highly discriminative, while maintaining invariance properties. The presented framework for invariant measurement is well-founded in physics as well as in measurement science. Hence, the local visual measurements and their invariant representations are considered theoretically better founded than existing methods for the measurement of invariant features.

[1]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[2]  J. Koenderink,et al.  Representation of local geometry in the visual system , 1987, Biological Cybernetics.

[3]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[4]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Arnold W. M. Smeulders,et al.  Invariant representation in image processing , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[6]  Arnold W. M. Smeulders,et al.  Color and Scale: The Spatial Structure of Color Images , 2000, ECCV.

[7]  H B Barlow,et al.  The knowledge used in vision and where it comes from. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[9]  M. Baxandall Shadows and Enlightenment , 1995 .

[10]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[11]  D. Foster,et al.  Relational colour constancy from invariant cone-excitation ratios , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Guillermo Sapiro,et al.  Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach , 1994, Geometry-Driven Diffusion in Computer Vision.

[13]  S. Sutherland Eye, brain and vision , 1993, Nature.

[14]  M. Landy,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[15]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[16]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[18]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[19]  Alex Pentland,et al.  A New Sense for Depth of Field , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Azriel Rosenfeld,et al.  Improved Methods of Estimating Shape from Shading Using the Light Source Coordinate System , 1985, Artif. Intell..

[21]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[22]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[23]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[24]  P. Kubelka,et al.  New contributions to the optics of intensely light-scattering materials. , 1954, Journal of the Optical Society of America.

[25]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .