mTOR hyperactivation in Down Syndrome underlies deficits in autophagy induction, autophagosome formation, and mitophagy

[1]  Mark R. Marten,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1 , 2021, Autophagy.

[2]  A. Cuervo,et al.  Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-βCTF (C99) , 2019, The Journal of Neuroscience.

[3]  R. Youle,et al.  Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance , 2018, Current Biology.

[4]  T. Burgoyne,et al.  Oxidation of Atg3 and Atg7 mediates inhibition of autophagy , 2018, Nature Communications.

[5]  A. Ballabio,et al.  Molecular definitions of autophagy and related processes , 2017, The EMBO journal.

[6]  G. Qin,et al.  FoxO1 Promotes Mitophagy in the Podocytes of Diabetic Male Mice via the PINK1/Parkin Pathway , 2017, Endocrinology.

[7]  D. Hwang,et al.  Characterization of developmental defects in the forebrain resulting from hyperactivated mTOR signaling by integrative analysis of transcriptomic and proteomic data , 2017, Scientific Reports.

[8]  S. Ginsberg,et al.  Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy , 2016, Autophagy.

[9]  L. Scorrano,et al.  Mitochondrial Cristae: Where Beauty Meets Functionality. , 2016, Trends in biochemical sciences.

[10]  V. Shoshan-Barmatz,et al.  The mitochondrial voltage-dependent anion channel 1 in tumor cells. , 2015, Biochimica et biophysica acta.

[11]  N. Mizushima,et al.  Autophagy machinery in the context of mammalian mitophagy. , 2015, Biochimica et biophysica acta.

[12]  R. Nixon,et al.  Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. , 2015, Cell reports.

[13]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[14]  R. Youle,et al.  MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5 , 2015, The Journal of cell biology.

[15]  M. Carrillo,et al.  Down syndrome and Alzheimer's disease: Common pathways, common goals , 2015, Alzheimer's & Dementia.

[16]  A. Goldberg,et al.  Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy , 2015, Nature Communications.

[17]  R. Youle,et al.  The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease , 2015, Neuron.

[18]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[19]  E. Holzbaur,et al.  Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation , 2014, Proceedings of the National Academy of Sciences.

[20]  P. Deyn,et al.  Epigenetics: The neglected key to minimize learning and memory deficits in Down syndrome , 2014, Neuroscience & Biobehavioral Reviews.

[21]  Haitao Wang,et al.  The Nerve Growth Factor Signaling and Its Potential as Therapeutic Target for Glaucoma , 2014, BioMed research international.

[22]  E. Aronica,et al.  mTOR Hyperactivation in down syndrome hippocampus appears early during development. , 2014, Journal of neuropathology and experimental neurology.

[23]  D. Butterfield,et al.  Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. , 2014, Biochimica et biophysica acta.

[24]  D. Sabatini,et al.  Regulation of mTORC1 by amino acids. , 2014, Trends in cell biology.

[25]  A. Whitworth,et al.  Genome-wide RNAi screen identifies the Parkinson disease GWAS risk locus SREBF1 as a regulator of mitophagy , 2014, Proceedings of the National Academy of Sciences.

[26]  Longxuan Li,et al.  ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy , 2014, EMBO reports.

[27]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[28]  Stylianos E. Antonarakis,et al.  Domains of genome-wide gene expression dysregulation in Down’s syndrome , 2014, Nature.

[29]  D. Graves,et al.  FOXO Transcription Factors: Their Clinical Significance and Regulation , 2014, BioMed research international.

[30]  Michael N. Hall,et al.  Making new contacts: the mTOR network in metabolism and signalling crosstalk , 2014, Nature Reviews Molecular Cell Biology.

[31]  A. Schapira,et al.  Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression , 2014, Neurobiology of Disease.

[32]  J. Martina,et al.  Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis , 2014, Cellular and Molecular Life Sciences.

[33]  D. Klionsky,et al.  The machinery of macroautophagy , 2013, Cell Research.

[34]  T. Yoshimori,et al.  The autophagosome: origins unknown, biogenesis complex , 2013, Nature Reviews Molecular Cell Biology.

[35]  S. Melov,et al.  SOD2 in mitochondrial dysfunction and neurodegeneration. , 2013, Free radical biology & medicine.

[36]  R. Nixon,et al.  The role of autophagy in neurodegenerative disease , 2013, Nature Medicine.

[37]  P. Boya,et al.  Emerging regulation and functions of autophagy , 2013, Nature Cell Biology.

[38]  Alexander M van der Bliek,et al.  Mechanisms of mitochondrial fission and fusion. , 2013, Cold Spring Harbor perspectives in biology.

[39]  C. Chu,et al.  After the banquet , 2013, Autophagy.

[40]  D. Sabatini,et al.  Regulation of mTORC1 and its impact on gene expression at a glance , 2013, Journal of Cell Science.

[41]  S. Benkovic,et al.  Replication clamps and clamp loaders. , 2013, Cold Spring Harbor perspectives in biology.

[42]  Mauro Piacentini,et al.  mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6 , 2013, Nature Cell Biology.

[43]  M. Ripoli,et al.  Chronic pro-oxidative state and mitochondrial dysfunctions are more pronounced in fibroblasts from Down syndrome foeti with congenital heart defects. , 2013, Human molecular genetics.

[44]  G. Helguera,et al.  Adaptive downregulation of mitochondrial function in down syndrome. , 2013, Cell metabolism.

[45]  D. Krainc,et al.  Phosphatase and Tensin Homolog (PTEN)-induced Putative Kinase 1 (PINK1)-dependent Ubiquitination of Endogenous Parkin Attenuates Mitophagy , 2012, The Journal of Biological Chemistry.

[46]  T. Schwarz,et al.  The pathways of mitophagy for quality control and clearance of mitochondria , 2012, Cell Death and Differentiation.

[47]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[48]  N. Mizushima,et al.  Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy , 2012, Journal of Cell Science.

[49]  A. Ballabio,et al.  A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB , 2012, The EMBO journal.

[50]  M. Hall,et al.  Rapamycin passes the torch: a new generation of mTOR inhibitors , 2011, Nature Reviews Drug Discovery.

[51]  M. L. Montesinos,et al.  An Increase in Basal BDNF Provokes Hyperactivation of the Akt-Mammalian Target of Rapamycin Pathway and Deregulation of Local Dendritic Translation in a Mouse Model of Down's Syndrome , 2011, The Journal of Neuroscience.

[52]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[53]  S. Lipton,et al.  Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation , 2011, Molecular Neurodegeneration.

[54]  David S. Park,et al.  Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress , 2011, Cell Death and Differentiation.

[55]  E. Marra,et al.  Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. , 2011, The Biochemical journal.

[56]  V. Orlando,et al.  The DNA repair complex Ku70/86 modulates Apaf1 expression upon DNA damage , 2011, Cell Death and Differentiation.

[57]  B. Viollet,et al.  Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy , 2011, Science.

[58]  D. Sabatini,et al.  mTOR: from growth signal integration to cancer, diabetes and ageing , 2010, Nature Reviews Molecular Cell Biology.

[59]  Di Wu,et al.  ROAST: rotation gene set tests for complex microarray experiments , 2010, Bioinform..

[60]  Wei-Guo Zhu,et al.  Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity , 2010, Nature Cell Biology.

[61]  T. Mak,et al.  FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation , 2009, Proceedings of the National Academy of Sciences.

[62]  M. LaVoie,et al.  The effects of oxidative stress on parkin and other E3 ligases , 2007, Journal of neurochemistry.

[63]  K. Yamakawa,et al.  Mitochondrial dysfunction and tau hyperphosphorylation in Ts1Cje, a mouse model for Down syndrome. , 2006, Human molecular genetics.

[64]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  R. Scarpulla,et al.  Control of Mitochondrial Transcription Specificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1 and NRF-2) and PGC-1 Family Coactivators , 2005, Molecular and Cellular Biology.

[66]  Caine W. Wong,et al.  Altered Metabolism of the Amyloid β Precursor Protein Is Associated with Mitochondrial Dysfunction in Down's Syndrome , 2002, Neuron.

[67]  M. Hattori,et al.  The DNA sequence of human chromosome 21 , 2000, Nature.

[68]  B. Yankner,et al.  Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro , 1995, Nature.

[69]  E. Head,et al.  mTOR in Down syndrome: Role in Aß and tau neuropathology and transition to Alzheimer disease‐like dementia , 2018, Free radical biology & medicine.

[70]  Lee,et al.  Editorial :Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). DOI: 10.1080/15548627.2015.1100356;WOS:000373595400001; 2-s2.0-85013763791&;PMID: 26799652 , 2016 .

[71]  F. Pallardó,et al.  Decreased cell proliferation and higher oxidative stress in fibroblasts from Down Syndrome fetuses. Preliminary study. , 2014, Biochimica et biophysica acta.

[72]  R. Hosking mTOR: The Master Regulator , 2012, Cell.

[73]  Lisa L. Smith,et al.  AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. , 2010, Cancer research.