An energy balance criterion for nanoindentation-induced single and multiple dislocation events

Small volume deformation can produce two types of plastic instability events. The first involves dislocation nucleation as a dislocation by dislocation event and occurs in nanoparticles or bulk single crystals deformed by atomic force microscopy or small nanoindenter forces. For the second instability event, this involves larger scale nanocontacts into single crystals or their films wherein multiple dislocations cooperate to form a large displacement excursion or load drop. With dislocation work, surface work, and stored elastic energy, one can account for the energy expended in both single and multiple dislocation events. This leads to an energy balance criterion which can model both the displacement excursion and load drop in either constant load or fixed displacement experiments. Nanoindentation of Fe-3% Si (100) crystals with various oxide film thicknesses supports the proposed approach.

[1]  J. Pethica,et al.  Nanoindentation studies in a liquid environment , 1996 .

[2]  C. B. Carter,et al.  Superhard silicon nanospheres , 2003 .

[3]  C. B. Carter,et al.  A boundary constraint energy balance criterion for small volume deformation , 2005 .

[4]  A. Stoneham,et al.  The effect of dislocation loops on the lattice parameter, determined by X-ray diffraction , 1983 .

[5]  J. M. Cox,et al.  The micro-hardness of metals at very low loads , 1970 .

[6]  Peter M. Anderson,et al.  Indentation induced dislocation nucleation: The initial yield point , 1996 .

[7]  N. Gane The direct measurement of the strength of metals on a sub-micrometre scale , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  R. Colton,et al.  Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals , 1997 .

[9]  J. Rabier,et al.  Plastic deformation of Si at low temperature under high confining pressure , 2001 .

[10]  J. Pethica,et al.  Nanoindentation creep of single-crystal tungsten and gallium arsenide , 1997 .

[11]  Mark F. Horstemeyer,et al.  Interpretations of Indentation Size Effects , 2002 .

[12]  T. Page,et al.  The deformation behavior of ceramic crystals subjected to very low load (nano)indentations , 1992 .

[13]  C. B. Carter,et al.  Reverse plasticity in single crystal silicon nanospheres , 2005 .

[14]  Ting Zhu,et al.  Quantifying the early stages of plasticity through nanoscale experiments and simulations , 2003 .

[15]  J. Pethica,et al.  The effect of tip momentum on the contact stiffness and yielding during nanoindentation testing , 1999 .

[16]  T. Michalske,et al.  Dislocation nucleation at nano-scale mechanical contacts , 1998 .

[17]  F. P. Bowden,et al.  Microdeformation of Solids , 1968 .

[18]  Roger Smith,et al.  Atomistic modelling of nanoindentation in iron and silver , 2001 .

[19]  William A. Curtin,et al.  A coupled atomistics and discrete dislocation plasticity simulation of nanoindentation into single crystal thin films , 2004 .

[20]  J C Hamilton,et al.  Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations. , 2002, Physical review letters.

[21]  S. J. Zhou,et al.  Shielding of cracks in a plastically polarizable material , 1991 .

[22]  E. Stach,et al.  Room temperature dislocation plasticity in silicon , 2005 .

[23]  W. Gerberich,et al.  In situ imaging of μN load indents into GaAs , 1995 .

[24]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[25]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[26]  W. Gerberich,et al.  Surface constrained plasticity: Oxide rupture and the yield point process , 2001 .

[27]  D. Tabor,et al.  Contact of characterised metal surfaces at very low loads: Deformation and adhesion , 1979 .

[28]  J. Pethica The effect of oxygen on the adhesion of clean metal surfaces , 1981 .

[29]  J. Barbera,et al.  Contact mechanics , 1999 .

[30]  Ting Zhu,et al.  Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper , 2004 .

[31]  J. Houston,et al.  Nanomechanical properties of Au (111), (001), and (110) surfaces , 1998 .

[32]  D. Bahr,et al.  Non-linear deformation mechanisms during nanoindentation , 1998 .

[33]  Younan Xia,et al.  Geometry and surface state effects on the mechanical response of Au nanostructures , 2004 .

[34]  W. Gerberich,et al.  The injection of plasticity by millinewton contacts , 1995 .