Lambda-calculus, types and models

Cours de lambda-calcul. Definition, beta-reduction et confluence. Representation des fonctions recursives. Modeles du lambda-calcul Logique combinatoire Types, systeme F

[1]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[2]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[3]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[4]  Michel Parigot,et al.  Programming with Proofs , 1990, J. Inf. Process. Cybern..

[5]  Simona Ronchi Della Rocca,et al.  Principal Type Schemes for an Extended Type Theory , 1984, Theor. Comput. Sci..

[6]  J. Girard,et al.  Proofs and types , 1989 .

[7]  G. Pottinger,et al.  A type assignment for the strongly normalizable |?-terms , 1980 .

[8]  Chantal Berline Rétractions et interprétation interne du polymorphisme: problème de la rétraction universelle , 1992, RAIRO Theor. Informatics Appl..

[9]  Paola Giannini,et al.  Characterization of typings in polymorphic type discipline , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[10]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[11]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[12]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[13]  Roberto M. Amadio A Quick Construction of a Retraction of All Retractions for Stable Bifinites , 1995, Inf. Comput..

[14]  Dana S. Scott,et al.  Lambda Calculus: Some Models, Some Philosophy , 1980 .

[15]  Stefano Berardi Retractions on dI-domains as a model for Type:Type , 1991, Inf. Comput..

[16]  Mariangiola Dezani-Ciancaglini,et al.  A new type assignment for λ-terms , 1978, Arch. Math. Log..

[17]  P. Martin-Lof,et al.  Constructive mathematics and computer programming , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[18]  Joseph E. Stoy,et al.  Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .

[19]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[20]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[21]  E. Engeler Algebras and combinators , 1981 .

[22]  Corrado Böhm,et al.  Automatic Synthesis of Typed Lambda-Programs on Term Algebras , 1985, Theor. Comput. Sci..

[23]  Albert R. Meyer,et al.  What is a Model of the Lambda Calculus? , 1982, Inf. Control..

[24]  Jean-Yves Girard,et al.  The System F of Variable Types, Fifteen Years Later , 1986, Theor. Comput. Sci..

[25]  Daniel Leivant Reasoning about functional programs and complexity classes associated with type disciplines , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[26]  M. Dezani-Ciancaglini,et al.  Extended Type Structures and Filter Lambda Models , 1984 .

[27]  Jean-Louis Krivine,et al.  Opérateurs de mise en mémoire et traduction de Gödel , 1990, Arch. Math. Log..

[28]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[29]  Erwin Emgeler Algebras and combinators , 1979 .

[30]  Gordon D. Plotkin The lambda-Calculus is omega-Incomplete , 1974, J. Symb. Log..

[31]  A. Church The calculi of lambda-conversion , 1941 .

[32]  D. Scott Models for Various Type-Free Calculi , 1973 .

[33]  Harvey M. Friedman,et al.  Classically and intuitionistically provably recursive functions , 1978 .

[34]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[35]  J. Y. Girard,et al.  Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .

[36]  Michel Parigot,et al.  Programming with Proofs: A Second Order Type Theory , 1988, ESOP.

[37]  G. Plotkin Tω as a Universal Domain , 1978 .

[38]  Daniel Leivant,et al.  The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.

[39]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[40]  Gerd Mitschke,et al.  The Standardization Theorem for λ-Calculus , 1979, Math. Log. Q..

[41]  J. Roger Hindley,et al.  Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.

[42]  R. Hindley,et al.  Reductions of residuals are finite , 1978 .