Toeplitz-type approximations to the Hadamard integral operator and their applications to electromagnetic cavity problems

In this paper, we present five Toeplitz-type schemes for the Hadamard finite-part integral operator. These discrete schemes are of Toeplitz or nearly Toeplitz structure, which gives many advantages in developing fast linear solvers for numerical solution of intego-differential equations. Two examples are presented to confirm our theoretical analysis of approximations to the Hadamard finite-part integrals and to show the accuracy of schemes for solving integral equations with a hypersingular kernel. Finally, we apply our algorithms for electromagnetic scattering from cavities. Numerical results show that these algorithms are efficient.

[1]  N. Lu,et al.  Application of fast multipole method to finite-element boundary-integral solution of scattering problems , 1996 .

[2]  Neville J. Ford,et al.  SOLUTION OF A SINGULAR INTEGRAL EQUATION BY A SPLIT-INTERVAL METHOD , 2007 .

[3]  Nikolaos I. Ioakimidis,et al.  On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives , 1985 .

[4]  Weiwei Sun,et al.  The Superconvergence of the Composite Trapezoidal Rule for Hadamard Finite Part Integrals , 2005, Numerische Mathematik.

[5]  Philsu Kim,et al.  Two trigonometric quadrature formulae for evaluating hypersingular integrals , 2003 .

[6]  Dan Givoli,et al.  Natural Boundary Integral Method and Its Applications , 2002 .

[7]  David Elliott,et al.  Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals , 1997 .

[8]  Peter Linz,et al.  On the approximate computation of certain strongly singular integrals , 1985, Computing.

[9]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[10]  Qi‐Kui Du,et al.  Evaluations of certain hypersingular integrals on interval , 2001 .

[11]  Xiao-Qing Jin,et al.  Developments and Applications of Block Toeplitz Iterative Solvers , 2003 .

[12]  Giovanni Monegato,et al.  Numerical evaluation of hypersingular integrals , 1994 .

[13]  Weiwei Sun,et al.  Newton-Cotes Formulae for the Numerical Evaluation of Certain Hypersingular Integrals , 2005, Computing.

[14]  U. Jin Choi,et al.  Improvement of the asymptotic behaviour of the Euler–Maclaurin formula for Cauchy principal value and Hadamard finite‐part integrals , 2004 .

[15]  George M. Phillips,et al.  Theory and applications of numerical analysis , 1976, The Mathematical Gazette.

[16]  D. F. Paget,et al.  The numerical evaluation of Hadamard finite-part integrals , 1981 .

[17]  N. G. Zamani,et al.  Adaptive mesh redistribution for the boundary element in elastostatics , 1990 .

[18]  P. Harris,et al.  ON THE INFLUENCE OF THE WAVENUMBER ON COMPRESSION IN A WAVELET BOUNDARY ELEMENT METHOD FOR THE HELMHOLTZ EQUATION , 2007 .

[19]  N. Zamani,et al.  Adaptive mesh refinement/redistribution for the equations of linear elasticity, boundary element formulation , 1992 .

[20]  George J. Tsamasphyros,et al.  Gauss quadrature rules for finite part integrals , 1990 .

[21]  Ivan P. Gavrilyuk,et al.  Collocation methods for Volterra integral and related functional equations , 2006, Math. Comput..

[22]  Jiming Wu,et al.  A superconvergence result for the second-order Newton–Cotes formula for certain finite-part integrals , 2005 .

[23]  John L. Volakis,et al.  Comparison of three FMM techniques for solving hybrid FE-BI systems , 1997 .

[24]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[25]  R. Duraiswami,et al.  Fast Multipole Methods for the Helmholtz Equation in Three Dimensions , 2005 .

[26]  Weiwei Sun,et al.  A Fast Algorithm for the Electromagnetic Scattering from a Large Cavity , 2005, SIAM J. Sci. Comput..

[27]  Tri Van,et al.  A time-domain finite element method for Helmholtz equations , 2002 .

[28]  Y. Chen A numerical solution technique of hypersingular integral equation for curved cracks , 2003 .

[29]  Chung-Yuen Hui,et al.  EVALUATIONS OF HYPERSINGULAR INTEGRALS USING GAUSSIAN QUADRATURE , 1999 .

[30]  H. Ammari,et al.  An integral equation method for the electromagnetic scattering from cavities , 2000 .