Generation of 130-fsec Midinfrared Pulses

Infrared (IR) pulses as short as 130 fsec are generated by using semiconductors switching. Such pulses contain only ~4 optical cycles, the shortest ever achieved in the midinfrared. The measured power spectrum (7.5–10.5-μm base width) is consistent with the Fourier transform of the IR pulse.

[1]  C. A. Raffo,et al.  Absorption saturation in germanium, silicon, and gallium arsenide at 10.6 μm , 1972 .

[2]  D. Auston,et al.  Picosecond Ellipsometry of Transient Electron-Hole Plasmas in Germanium , 1974 .

[3]  A. J. Alcock,et al.  A fast scalable switching technique for high‐power CO2 laser radiation , 1975 .

[4]  Arto V. Nurmikko,et al.  Generation of picosecond pulses of variable duration at 10.6 μm , 1978 .

[5]  Norman P. Barnes,et al.  Temperature-dependent Sellmeier coefficients and nonlinear optics average power limit for germanium , 1979 .

[6]  P. Corkum,et al.  Electron‐beam‐controlled transmission of 10‐μm radiation in semiconductors , 1979 .

[7]  H. Driel,et al.  Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium , 1982 .

[8]  R. Yen,et al.  Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon , 1983 .

[9]  D. Grischkowsky,et al.  12‐fs ultrashort optical pulse compression at a high repetition rate , 1984 .

[10]  P. Laporta,et al.  The role of cavity dispersion in CW mode-locked dye lasers , 1984 .

[11]  R. Stolen,et al.  Optical pulse compression to 8 fs at a 5‐kHz repetition rate , 1985 .

[12]  W. Knox Amplification of femtosecond optical pulses at 5-10-kHz repetition rate using copper vapor lasers (A) , 1985 .

[13]  P. Corkum,et al.  Amplification of picosecond 10 µm pulses in multiatmosphere CO2lasers , 1985, IEEE Journal of Quantum Electronics.

[14]  J. Gordon,et al.  Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. , 1985, Optics letters.

[15]  Paul B. Corkum,et al.  Controlled switching of 10-micrometer radiation using semiconductor étalons , 1985 .

[16]  P P Sorokin,et al.  Amplification of 350-fsec pulses in XeCl excimer gain modules. , 1986, Optics letters.

[17]  P. Corkum,et al.  Amplification of 70 fs pulses in a high repetition rate XeCl pumped dye laser amplifier , 1986 .