Safety mechanisms in lithium-ion batteries

[1]  V. Suriyanon,et al.  IN R , 2006 .

[2]  Doron Aurbach,et al.  On the thermal stability of LiPF6 , 2005 .

[3]  I. Exnar,et al.  Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries , 2005 .

[4]  Kang Xu,et al.  LiBOB: Is it an alternative salt for lithium ion chemistry? , 2005 .

[5]  M. Grätzel,et al.  Novel electrolytes for Li4Ti5O12-based high power lithium ion batteries with nitrile solvents , 2005 .

[6]  G. Fey,et al.  Nanoparticulate coatings for enhanced cyclability of LiCoO2 cathodes , 2005 .

[7]  G. Fey,et al.  Enhanced cyclability and thermal stability of LiCoO2 coated with cobalt oxides , 2005 .

[8]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[9]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[10]  H. X. Yang,et al.  A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries , 2004 .

[11]  Byungwoo Park,et al.  Comparison of Overcharge Behavior of AlPO4-Coated LiCoO2 and LiNi0.8Co0.1Mn0.1 O 2 Cathode Materials in Li-Ion Cells , 2004 .

[12]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[13]  J. Dahn,et al.  Effects of particle size and electrolyte salt on the thermal stability of Li0.5CoO2 , 2004 .

[14]  G. Fey,et al.  Preformed Boehmite Nanoparticles As Coating Materials for Long-Cycling LiCoO2 , 2004 .

[15]  K. Edström,et al.  Electrolyte additives for enhanced thermal stability of the graphite anode interface in a Li-ion battery , 2004 .

[16]  P. Stroeve,et al.  Improvement of Thermal Stability of Li-Ion Batteries by Polymer Coating of LiMn2O4 , 2004 .

[17]  G. Fey,et al.  A simple mechano-thermal coating process for improved lithium battery cathode materials , 2004 .

[18]  Peter Birke,et al.  PoLiFlex™, the innovative lithium-polymer battery , 2004 .

[19]  Junwei Jiang,et al.  Thermal stability of 18650 size Li-ion cells containing LiBOB electrolyte salt , 2004 .

[20]  Guoying Chen,et al.  Overcharge protection for rechargeable lithium batteries using electroactive polymers , 2004 .

[21]  Junwei Jiang,et al.  ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes , 2004 .

[22]  T. P. Kumar,et al.  Long-cycling coated LiCoO2 cathodes for lithium batteries - A review , 2004 .

[23]  Joon-Ho Shin,et al.  Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes , 2003 .

[24]  Jeff Dahn,et al.  Comparison of the Thermal Stability of Lithiated Graphite in LiBOB EC/DEC and in LiPF6 EC/DEC , 2003 .

[25]  Jaephil Cho,et al.  Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability , 2003 .

[26]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[27]  K. Amine,et al.  Flame-retardant additives for lithium-ion batteries , 2003 .

[28]  Kristina Edström,et al.  Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery , 2003 .

[29]  T. Jow,et al.  Formation of the graphite/electrolyte interface by lithium bis(oxalato)borate , 2003 .

[30]  Jun-ichi Yamaki,et al.  LiFePO4 storage at room and elevated temperatures , 2003 .

[31]  H. Ota,et al.  Effect of cyclic phosphate additive in non-flammable electrolyte , 2003 .

[32]  J. Yamaki,et al.  Thermal stability of electrolytes with LixCoO2 cathode or lithiated carbon anode , 2003 .

[33]  D. Aurbach,et al.  The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions , 2003 .

[34]  G. Blomgren Liquid electrolytes for lithium and lithium-ion batteries , 2003 .

[35]  Y. Aihara,et al.  Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt , 2003 .

[36]  Doron Aurbach,et al.  LiPF3 ( CF 2 CF 3 ) 3 : A Salt for Rechargeable Lithium Ion Batteries , 2003 .

[37]  Kang Xu,et al.  Li-ion cell with poly(acrylonitrile-methyl methacrylate)-based gel polymer electrolyte , 2003 .

[38]  D. D. MacNeil,et al.  Can an Electrolyte for Lithium-Ion Batteries Be Too Stable? , 2003 .

[39]  Arunachala Mada Kannan,et al.  High Capacity Surface-Modified LiCoO2 Cathodes for Lithium-Ion Batteries , 2003 .

[40]  Kang Xu,et al.  Lithium Bis(oxalato)borate Stabilizes Graphite Anode in Propylene Carbonate , 2002 .

[41]  Kang Xu,et al.  Effects of Tris(2,2,2-trifluoroethyl) Phosphate as a Flame-Retarding Cosolvent on Physicochemical Properties of Electrolytes of LiPF6 in EC-PC-EMC of 3:3:4 Weight Ratios , 2002 .

[42]  James McBreen,et al.  Using a Boron-Based Anion Receptor Additive to Improve the Thermal Stability of LiPF6-Based Electrolyte for Lithium Batteries , 2002 .

[43]  D. Aurbach,et al.  Attempts to Improve the Behavior of Li Electrodes in Rechargeable Lithium Batteries , 2002 .

[44]  J. Arai A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries , 2002 .

[45]  Kang Xu,et al.  A Thermal Stabilizer for LiPF6-Based Electrolytes of Li-Ion Cells , 2002 .

[46]  Kang Xu,et al.  Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate , 2002 .

[47]  D. D. MacNeil,et al.  The Reactions of Li0.5CoO2 with Nonaqueous Solvents at Elevated Temperatures , 2002 .

[48]  Ho‐Sung Kim,et al.  Redox shuttle additives for chemical overcharge protection in lithium ion batteries , 2002 .

[49]  Y. Baba,et al.  Thermal stability of LixCoO2 cathode for lithium ion battery , 2002 .

[50]  D. D. MacNeil,et al.  A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes , 2002 .

[51]  Andrea G. Bishop,et al.  The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes , 2002 .

[52]  Kang Xu,et al.  An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes , 2002 .

[53]  Kang Xu,et al.  Study of LiBF4 as an electrolyte salt for a Li-ion battery , 2002 .

[54]  Feng Wu,et al.  Electrochemical Evaluation and Structural Characterization of Commercial LiCoO2 Surfaces Modified with MgO for Lithium-Ion Batteries , 2002 .

[55]  Y. Fung,et al.  Electrodeposited Tin Coating as Negative Electrode Material for Lithium-Ion Battery in Room Temperature Molten Salt , 2002 .

[56]  T. Umegaki,et al.  Electrochemical Characteristics of LiNi0.5Mn1.5 O 4 Cathodes with Ti or Al Current Collectors , 2002 .

[57]  Yung-Eun Sung,et al.  Suppressive effect of Li2CO3 on initial irreversibility at carbon anode in Li-ion batteries , 2002 .

[58]  Kang Xu,et al.  LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation , 2002 .

[59]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[60]  H. S. Lee,et al.  Improved Elevated Temperature Cycling of LiMn2 O 4 Spinel Through the Use of a Composite LiF-Based Electrolyte , 2001 .

[61]  D. D. MacNeil,et al.  The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li0.5CoO2 , 2001 .

[62]  T. Nakajima,et al.  Effect of addition of fluoroethers to organic solvents for lithium ion secondary batteries , 2001 .

[63]  G. Venugopal Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries , 2001 .

[64]  Kristina Edström,et al.  Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite , 2001 .

[65]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: II. The Use of an Amorphous Carbon Anode , 2001 .

[66]  E. Yasukawa,et al.  Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties , 2001 .

[67]  Jaephil Cho,et al.  LiCoO2 Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase , 2001 .

[68]  Yukio Sasaki,et al.  Application of Lithium Organoborate with Salicylic Ligand to Lithium Battery Electrolyte , 2001 .

[69]  E. Takeuchi,et al.  Abuse Testing of Lithium-Ion Batteries: Characterization of the Overcharge Reaction of LiCoO2/Graphite Cells , 2001 .

[70]  E. Zhecheva,et al.  Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes , 2001 .

[71]  T. D. Hatchard,et al.  A Comparison Between the High Temperature Electrode /Electrolyte Reactions of Li x CoO2 and Li x Mn2 O 4 , 2001 .

[72]  Michael Schmidt,et al.  Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries , 2001 .

[73]  Diana Golodnitsky,et al.  Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies , 2001 .

[74]  J. Dahn,et al.  Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries As Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte , 2001 .

[75]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[76]  E. Peled,et al.  Effect of mild oxidation of natural graphite (NG7) on anode-electrolyte thermal reactions , 2001 .

[77]  Wu Xu,et al.  Weakly Coordinating Anions, and the Exceptional Conductivity of Their Nonaqueous Solutions , 2001 .

[78]  Jaephil Cho,et al.  Enhanced Structural Stability of o -LiMnO 2 by Sol−Gel Coating of Al 2 O 3 , 2001 .

[79]  Tae-Joon Kim,et al.  Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell. , 2001, Angewandte Chemie.

[80]  Byungwoo Park,et al.  Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell , 2000 .

[81]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[82]  H. Matsumoto,et al.  Highly Conductive Room Temperature Molten Salts Based on Small Trimethylalkylammonium Cations and Bis(trifluoromethylsulfonyl)imide , 2000 .

[83]  Ho-jin Kweon,et al.  Modification of LixNi1−yCoyO2 by applying a surface coating of MgO , 2000 .

[84]  Kenji Fukuda,et al.  Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material , 2000 .

[85]  Doron Aurbach,et al.  The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li x MO y Host Materials (M = Ni, Mn) , 2000 .

[86]  Ralph E. White,et al.  Ni‐Composite Microencapsulated Graphite as the Negative Electrode in Lithium‐Ion Batteries I. Initial Irreversible Capacity Study , 2000 .

[87]  D. D. MacNeil,et al.  An Autocatalytic Mechanism for the Reaction of Li x CoO2 in Electrolyte at Elevated Temperature , 2000 .

[88]  D. D. MacNeil,et al.  Comparison of the Reactivity of Various Carbon Electrode Materials with Electrolyte at Elevated Temperature , 1999 .

[89]  J. McBreen,et al.  Comparative Studies of the Electrochemical and Thermal Stability of Two Types of Composite Lithium Battery Electrolytes Using Boron-Based Anion Receptors , 1999 .

[90]  M. Broussely,et al.  On safety of lithium-ion cells , 1999 .

[91]  J. Yamaki,et al.  A consideration of lithium cell safety , 1999 .

[92]  Y. Fung,et al.  Room temperature molten salt as medium for lithium battery , 1999 .

[93]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental , 1999 .

[94]  Momoe Adachi,et al.  Aromatic Compounds as Redox Shuttle Additives for 4 V Class Secondary Lithium Batteries , 1999 .

[95]  E. Peled,et al.  A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li‐Ion Batteries , 1999 .

[96]  D. Stevens,et al.  Importance of Heat Transfer by Radiation in Li ‐ Ion Batteries during Thermal Abuse , 1999 .

[97]  Wu Xu,et al.  A Fusible Orthoborate Lithium Salt with High Conductivity in Solutions , 1999 .

[98]  S. Okada,et al.  Thermal behavior of Li1-yNiO2 and the decomposition mechanism , 1998 .

[99]  J. Tarascon,et al.  Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li‐Ion Batteries , 1998 .

[100]  H. Gores,et al.  Lithium Bis[5‐fluoro‐2‐olato‐1‐benzenesulfonato (2‐)‐O,O′]borate(1‐), a New Anodically and Cathodically Stable Salt for Electrolytes of Lithium‐Ion Cells , 1998 .

[101]  Z. Zhang,et al.  Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells , 1998 .

[102]  J. Tarascon,et al.  Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance , 1997 .

[103]  J. Barthel,et al.  A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes IV. Investigations of the Electrochemical Oxidation of Lithium Organoborates , 1997 .

[104]  J. Currie,et al.  Influence of morphology on the stability of LiNiO2 , 1997 .

[105]  H. Asahina,et al.  Chemical properties of various organic electrolytes for lithium rechargeable batteries: 1. Characterization of passivating layer formed on graphite in alkyl carbonate solutions , 1997 .

[106]  T. Ohzuku,et al.  Innovative insertion material of LiAl 1/4Ni 3/4O 2 ( R- m) for lithium-ion (shuttlecock) batteries , 1997 .

[107]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[108]  K. Kanamura,et al.  Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO2 thin film electrode , 1996 .

[109]  James McBreen,et al.  The Synthesis of a New Family of Boron‐Based Anion Receptors and the Study of Their Effect on Ion Pair Dissociation and Conductivity of Lithium Salts in Nonaqueous Solutions , 1996 .

[110]  H. Pettersson,et al.  The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications , 1996 .

[111]  James W. Evans,et al.  Thermal Analysis of Lithium‐Ion Batteries , 1996 .

[112]  Seung M. Oh,et al.  Dissolution of Spinel Oxides and Capacity Losses in 4 V Li / Li x Mn2 O 4 Cells , 1996 .

[113]  M. Ondrechen,et al.  The Intrinsic Anodic Stability of Several Anions Comprising Solvent‐Free Ionic Liquids , 1996 .

[114]  Lisa C. Klein,et al.  Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries , 1996 .

[115]  Tsutomu Ohzuku,et al.  Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries , 1995 .

[116]  H. Tamura,et al.  Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes , 1995 .

[117]  G. Pistoia,et al.  Effect of electrode porosity on the performance of natural Brazilian graphite electrodes , 1995 .

[118]  D. Aurbach,et al.  The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II . Graphite Electrodes , 1995 .

[119]  Yo Kobayashi,et al.  An X-ray photoelectron spectroscopy study on the surface film on carbon black anode in lithium secondary cells , 1995 .

[120]  H. X. Yang,et al.  Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries , 1995 .

[121]  Dominique Guyomard,et al.  High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries , 1995 .

[122]  Mika Yokoyama,et al.  Battery characteristics with various carbonaceous materials , 1995 .

[123]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[124]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[125]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[126]  Jeff Dahn,et al.  Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries , 1994 .

[127]  W. R. McKinnon,et al.  Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4] , 1994 .

[128]  Samuel C. Levy,et al.  Battery Hazards and Accident Prevention , 1994 .

[129]  S. Panero,et al.  Electrochemical characterization of an ambient temperature rechargeable Li battery based on low molecular weight polymer electrolyte , 1994 .

[130]  S. Surampudi,et al.  Status of the development of rechargeable lithium cells , 1994 .

[131]  G. Pistoia,et al.  Lithium batteries : new materials, developments, and perspectives , 1994 .

[132]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[133]  J. Tarascon,et al.  Rechargeable Li1 + x Mn2 O 4 / Carbon Cells with a New Electrolyte Composition Potentiostatic Studies and Application to Practical Cells , 1993 .

[134]  Dominique Guyomard,et al.  The Li1+xMn2O4/C rocking-chair system: a review , 1993 .

[135]  K. Abraham Directions in secondary lithium battery research and development , 1993 .

[136]  J. Tarascon,et al.  An update of the Li metal-free rechargeable battery based on Li1+χMn2O4 cathodes and carbon anodes , 1993 .

[137]  F. C. Laman,et al.  Impedance Studies for Separators in Rechargeable Lithium Batteries , 1993 .

[138]  Simon S. Woo,et al.  Applications of Metallocenes in Rechargeable Lithium Batteries for Overcharge Protection , 1992 .

[139]  M. Armand,et al.  Electrochemical study of linear and crosslinked POE-based polymer electrolytes , 1992 .

[140]  A. Webber Conductivity and Viscosity of Solutions of LiCF3 SO 3, Li ( CF 3 SO 2 ) 2 N , and Their Mixtures , 1991 .

[141]  Subbarao Surampudi,et al.  Analysis of Redox Additive‐Based Overcharge Protection for Rechargeable Lithium Batteries , 1991 .

[142]  K. Abraham,et al.  n‐Butylferrocene for Overcharge Protection of Secondary Lithium Batteries , 1990 .

[143]  Der-Tau Chin,et al.  Electrochemical overcharge protection of rechargeable lithium batteries: I. Kinetics of iodide/tri-iodide/iodine redox reactions on platinum in LiAsF/sub 6//tetrahydrofuran solutions , 1988 .

[144]  P. Ugo,et al.  Oxidation potentials of electrolyte solutions for lithium cells , 1988 .

[145]  Der-Tau Chin,et al.  Electrochemical Overcharge Protection of Rechargeable Lithium Batteries I . Kinetics of Iodide/Tri‐Iodide/Iodine Redox Reactions on Platinum in Solutions , 1988 .

[146]  Der-Tau Chin,et al.  Electrochemical Overcharge Protection of Rechargeable Lithium Batteries II . Effect of Lithium Iodide‐Iodine Additives on the Behavior of Lithium Electrode in Solutions , 1988 .

[147]  M. Pasquali,et al.  Comparison with other secondary cells and influence of micro- and macro-structural alterations on the cathode performance , 1986 .

[148]  J. Foropoulos,et al.  Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl) imide, (CF3SO2)2NH , 1984 .

[149]  J. Devynck,et al.  Electrochemical Intercalation of Lithium into Transition Metal Compounds in Low Temperature Chloroaluminate Melts , 1984 .

[150]  J. J. Smith,et al.  International Meeting on Lithium Batteries. , 1983 .

[151]  M. Barak,et al.  Power Sources 4 , 1974 .

[152]  A. Dey,et al.  Electrochemical Alloying of Lithium in Organic Electrolytes , 1971 .

[153]  J. Mason,et al.  Oxidation Potentials of Arylferrocenes1 , 1960 .