Artin groups of Euclidean type

This article resolves several long-standing conjectures about Artin groups of Euclidean type. Specifically we prove that every irreducible Euclidean Artin group is a torsion-free centerless group with a decidable word problem and a finite-dimensional classifying space. We do this by showing that each of these groups is isomorphic to a subgroup of a group with an infinite-type Garside structure. The Garside groups involved are introduced here for the first time. They are constructed by applying semi-standard procedures to crystallographic groups that contain Euclidean Coxeter groups but which need not be generated by the reflections they contain.

[1]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[2]  Jon McCammond The structure of Euclidean Artin groups , 2013, 1312.7781.

[3]  Thomas Brady,et al.  K(π 1)'s for Artin Groups of Finite Type , 2000 .

[4]  R. Carter REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .

[5]  Jon McCammond Dual euclidean Artin groups and the failure of the lattice property , 2013 .

[6]  Mario Salvetti,et al.  Topology of the complement of real hyperplanes in ℂN , 1987 .

[7]  Patrick Dehornoy,et al.  Foundations of Garside theory (EMS Tracts in Mathematics 22) , 2015 .

[8]  F. Digne Présentations duales des groupes de tresses de type affine ˜ A , 2006 .

[9]  Thomas Brady,et al.  Three-generator Artin groups of large type are biautomatic , 1998 .

[10]  P. Deligne,et al.  Les immeubles des groupes de tresses généralisés , 1972 .

[11]  J. Birman Braids, Links, and Mapping Class Groups. , 1975 .

[12]  M. Dyer,et al.  A note on the transitive Hurwitz action on decompositions of parabolic Coxeter elements , 2014, 1402.2500.

[13]  Victor Reiner,et al.  Non-crossing partitions for classical reflection groups , 1997, Discret. Math..

[14]  Egbert Brieskorn,et al.  Artin-Gruppen und Coxeter-Gruppen , 1972 .

[15]  Franccois Digne A Garside presentation for Artin-Tits groups of type $\tilde C_n$ , 2010, 1002.4320.

[16]  Bestvina's Normal Form Complex and the Homology of Garside Groups , 2002, math/0202228.

[17]  TWO-WEEK Loan COpy,et al.  University of California , 1886, The American journal of dental science.

[18]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[19]  T. T. Dieck CATEGORIES OF ROOTED CYLINDER RIBBONS AND THEIR REPRESENTATIONS , 1998 .

[20]  Jon McCammond,et al.  Braids, posets and orthoschemes , 2009, 0909.4778.

[21]  David Peifer,et al.  A Geometric and Algebraic Description of Annular Braid Groups , 2002, Int. J. Algebra Comput..

[22]  Thomas Brady,et al.  K(π, 1) for Artin Groups of Finite Type , 2002 .

[23]  THE HOMOTOPY TYPE OF ARTIN GROUPS , 1994 .

[24]  Eddy Godelle,et al.  Basic questions on Artin-Tits groups , 2011, 1105.1048.

[25]  Affine braids, Markov traces and the category O , 2004, math/0401317.

[26]  Jon McCammond,et al.  Factoring Euclidean isometries , 2013, Int. J. Algebra Comput..

[27]  Patrick Dehornoy,et al.  Garside families and Garside germs , 2012, 1208.3362.

[28]  David Bessis The dual braid monoid , 2001 .

[29]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[30]  Patrick Dehornoy,et al.  Foundations of Garside Theory , 2013, 1309.0796.

[31]  Patrick Dehornoy,et al.  Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .

[32]  Daniel Allcock,et al.  Braid pictures for artin groups , 1999, math/9907194.

[33]  R. Schiffler,et al.  Exceptional sequences and clusters , 2009, 0901.2590.

[34]  Ruth Charney,et al.  The K(π,1)-conjecture for the affine braid groups , 2003 .