Diode Lasers and Photonic Integrated Circuits

Ingredients. A Phenomenological Approach to Diode Lasers. Mirrors and Resonators for Diode Lasers. Gain and Current Relations. Dynamic Effects. Perturbation and Coupled--Mode Theory. Dielectric Waveguides. Photonic Integrated Circuits. Appendices. Index.

[1]  Larry A. Coldren,et al.  Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum‐well ridge‐waveguide lasers , 1994 .

[2]  Masahiro Asada,et al.  Chapter 2 – INTRABAND RELAXATION EFFECT ON OPTICAL SPECTRA , 1993 .

[3]  Allan D. Boardman,et al.  Modern Problems in Condensed Matter Sciences , 1991 .

[4]  N. A. Kuebler,et al.  Evidence for surface recombination at mesa sidewalls of self‐electro‐optic effect devices , 1990 .

[5]  Erich P. Ippen,et al.  Spontaneous emission rate alteration in optical waveguide structures , 1990 .

[6]  S. Hausser,et al.  Auger recombination in bulk and quantum well InGaAs , 1990 .

[7]  D. J. Robbins,et al.  Lifetime broadening in GaAs-AlGaAs quantum well lasers , 1990 .

[8]  Peter S. Zory,et al.  A model for GRIN-SCH-SQW diode lasers , 1988 .

[9]  Eli Yablonovitch,et al.  Nearly ideal electronic properties of sulfide coated GaAs surfaces , 1987 .

[10]  A. Suzuki,et al.  Carrier-induced lasing wavelength shift for quantum well laser diodes , 1987 .

[11]  Masamichi Yamanishi,et al.  Phase dampings of optical dipole moments and gain spectra in semiconductor lasers , 1987 .

[12]  R. Kelsall,et al.  Theory of Auger recombination in a quantum well wire , 1986 .

[13]  B. Jani,et al.  Effective masses in Sn‐doped Ga1−xAlxAs (x<0.33) determined by the Shubnikov–de Haas effect , 1985 .

[14]  Miller,et al.  Band-gap renormalization in semiconductor quantum wells containing carriers. , 1985, Physical review. B, Condensed matter.

[15]  R. Abram,et al.  Auger recombination in long-wavelength quantum-well lasers , 1984 .

[16]  H. Okamoto,et al.  Carrier-Induced Energy-Gap Shrinkage in Current-Injection GaAs/AlGaAs MQW Heterostructures , 1984 .

[17]  Niloy K. Dutta,et al.  The case for Auger recombination in In1−xGaxAsyP1−y , 1982 .

[18]  W. Tsang,et al.  Very low current threshold GaAs‐AlxGa1−xAs double‐heterostructure lasers grown by molecular beam epitaxy , 1980 .

[19]  M. Yamada,et al.  Estimation of the Intra-Band Relaxation Time in Undoped AlGaAs Injection Laser , 1980 .

[20]  T. Pearsall,et al.  An experimental determination of the effective masses for GaxIn1−xAsyP1−y alloys grown on InP , 1979 .

[21]  H. Casey,et al.  Heterostructure lasers. Part A. Fundamental principles , 1978 .

[22]  Claude Weisbuch,et al.  k → · p → perturbation theory in III-V compounds and alloys: a reexamination , 1977 .

[23]  L. Jastrzebski,et al.  Application of scanning electron microscopy to determination of surface recombination velocity: GaAs , 1975 .

[24]  J. Camassel,et al.  Temperature dependence of the band gap and comparison with the threshold frequency of pure GaAs lasers , 1975 .

[25]  M. Takeshima Auger recombination in InAs, GaSb, InP, and GaAs , 1972 .

[26]  P. T. Landsberg,et al.  Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[27]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[28]  R. Hall Electron-Hole Recombination in Germanium , 1952 .