A large dynamic range voltage controlled attenuator with improved linearity-in-dB for ultrasound applications

[1]  Jinwook Burm,et al.  High Frame-Rate VGA CMOS Image Sensor Using Non-Memory Capacitor Two-Step Single-Slope ADCs , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  B. Sadhu,et al.  A 28GHz SiGe BiCMOS phase invariant VGA , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[3]  S. Kang,et al.  A Precise Decibel-Linear Programmable Gain Amplifier Using a Constant Current-Density Function , 2012, IEEE Transactions on Microwave Theory and Techniques.

[4]  Mohamad Sawan,et al.  Fully Integrated High-Voltage Front-End Interface for Ultrasonic Sensing Applications , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Chih-Cheng Lu,et al.  A precise decibel-linear programmable-gain amplifier for ultrasound imaging receivers , 2016, 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).

[6]  Chao Chen,et al.  A 0.91mW/element pitch-matched front-end ASIC with integrated subarray beamforming ADC for miniature 3D ultrasound probes , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[7]  Taijun Liu,et al.  Nonuniformly Distributed Electronic Impedance Synthesizer , 2018, IEEE Transactions on Microwave Theory and Techniques.

[8]  Songcheol Hong,et al.  6-bit CMOS Digital Attenuators With Low Phase Variations for $X$-Band Phased-Array Systems , 2010, IEEE Transactions on Microwave Theory and Techniques.

[9]  M. Delmond,et al.  A Ku-band 6-bit digital attenuator with integrated serial to parallel converter , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[10]  Jieh-Tsorng Wu,et al.  A highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier , 2003, IEEE J. Solid State Circuits.

[11]  Elkim Roa,et al.  A 16-channel 38.6 mW/ch fully integrated Analog Front-End for handheld Ultrasound imaging , 2014, 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings.

[12]  Tsung-Heng Tsai,et al.  CMOS Ultrasonic Receiver With On-Chip Analog-to-Digital Front End for High-Resolution Ultrasound Imaging Systems , 2016, IEEE Sensors Journal.

[13]  Andreas G. Andreou,et al.  Linearised differential transconductors in subthreshold CMOS , 1995 .

[14]  Hyouk-Kyu Cha,et al.  A 15-V Bidirectional Ultrasound Interface Analog Front-End IC for Medical Imaging Using Standard CMOS Technology , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Santiago Celma,et al.  Using MOS current dividers for linearization of programmable gain amplifiers , 2008 .

[16]  A.M. Niknejad,et al.  Analysis and Design of RF CMOS Attenuators , 2008, IEEE Journal of Solid-State Circuits.

[17]  Tommaso Di Ianni,et al.  System-level Design of an Integrated Receiver Front-end for a Wireless Ultrasound Probe. , 2016, IEEE transactions on ultrasonics, ferroelectrics, and frequency control.

[18]  Yonina C. Eldar,et al.  A sub-nyquist analog front-end with subarray beamforming for ultrasound imaging , 2015, 2015 IEEE International Ultrasonics Symposium (IUS).

[19]  F. Giannini,et al.  Compensating for parasitic phase shift in microwave digitally controlled attenuators , 2008 .

[20]  R.W. Brodersen,et al.  Design of a Sub-mW 960-MHz UWB CMOS LNA , 2006, IEEE Journal of Solid-State Circuits.

[21]  W. Gosling Voltage controlled attenuators using field effect transistors , 1965 .

[22]  Xiaofeng He,et al.  Cell-Based Variable-Gain Amplifiers With Accurate dB-Linear Characteristic in 0.18 µm CMOS Technology , 2015, IEEE Journal of Solid-State Circuits.

[23]  Rui Paulo Martins,et al.  A high DR multi-channel stage-shared hybrid front-end for integrated power electronics controller , 2016, 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[24]  Harish Venkataraman,et al.  Challenges and considerations of analog front-ends design for portable ultrasound systems , 2010, 2010 IEEE International Ultrasonics Symposium.

[25]  Seok Lee,et al.  Low-noise amplifier path for ultrasound system applications , 2010, 2010 IEEE Asia Pacific Conference on Circuits and Systems.

[26]  Kari Halonen,et al.  A linear-control wide-band CMOS attenuator , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[27]  Andrea Bevilacqua,et al.  A 12 GHz 22 dB-Gain-Control SiGe Bipolar VGA With 2° Phase-Shift Variation , 2016, IEEE Journal of Solid-State Circuits.

[28]  Jechang Jeong,et al.  Speckle noise reduction in ultrasound images using SRAD and guided filter , 2018, 2018 International Workshop on Advanced Image Technology (IWAIT).

[29]  Yikai Wang,et al.  Low-Noise CMOS TGC Amplifier With Adaptive Gain Control for Ultrasound Imaging Receivers , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[30]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[31]  Suhwan Kim,et al.  A CMOS analog front-end for driving a high-speed SAR ADC in low-power ultrasound imaging systems , 2016, 2016 29th IEEE International System-on-Chip Conference (SOCC).

[32]  Byungsub Kim,et al.  A Single-Chip 64-Channel Ultrasound RX-Beamformer Including Analog Front-End and an LUT for Non-Uniform ADC-Sample-Clock Generation , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[33]  Omid Shoaei,et al.  Linear in dB, sub 0.2 dB gain-step CMOS programmable gain amplifier for ultrasound applications , 2017 .