Robust Visual Servo Control of a Mobile Robot for Object Tracking Using Shape Parameters

In this paper, we present the development of a robust visual servo system for object tracking applications of a nonholonomic mobile robot. The system mainly consists of an adaptive shape tracking algorithm and a robust visual servo controller. The adaptive shape tracking algorithm is designed to automatically detect the shape contours of moving objects, extract the shape parameters, and continuously track the object in shape parameter space. Based on direct measurements of the shape parameters, the visual servo controller is designed using the sliding mode control technique. Through a Lyapunov-based stability analysis, a sufficient condition on the selection of control gains to achieve the tracking goal in finite time is provided, and simulation and experimental tests of the proposed approach are illustrated.

[1]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[2]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[3]  Ying Wang,et al.  A Hybrid Visual Servo Controller for Robust Grasping by Wheeled Mobile Robots , 2010, IEEE/ASME Transactions on Mechatronics.

[4]  Helder Araújo,et al.  Active Stereo Tracking of $N\le 3$ Targets Using Line Scan Cameras , 2010, IEEE Transactions on Robotics.

[5]  Allen R. Tannenbaum,et al.  Localizing Region-Based Active Contours , 2008, IEEE Transactions on Image Processing.

[6]  Warren E. Dixon,et al.  Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Peter K. Allen,et al.  Real-time visual servoing , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[8]  Patricio A. Vela,et al.  Geometric Observers for Dynamically Evolving Curves , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  François Chaumette,et al.  Point-based and region-based image moments for visual servoing of planar objects , 2005, IEEE Transactions on Robotics.

[10]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[11]  W. E. Dixon,et al.  Keeping multiple objects in the field of view of a single PTZ camera , 2009, 2009 American Control Conference.

[12]  Norihiko Adachi,et al.  Image-based visual adaptive tracking control of nonholonomic mobile robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[13]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[14]  Kevin Nickels,et al.  Model-based tracking of complex articulated objects , 2001, IEEE Trans. Robotics Autom..

[15]  Chi-Cheng Cheng,et al.  Image following using the feature-based optical flow approach , 2002, Proceedings of the IEEE Internatinal Symposium on Intelligent Control.

[16]  Patricio A. Vela,et al.  Vision-Based Range Regulation of a Leader-Follower Formation , 2009, IEEE Transactions on Control Systems Technology.

[17]  Nicholas R. Gans,et al.  Stable Visual Servoing Through Hybrid Switched-System Control , 2007, IEEE Transactions on Robotics.

[18]  Patrick Rives,et al.  Applying visual servoing techniques to control a mobile hand-eye system , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[19]  Jong-Hann Jean,et al.  Adaptive visual tracking of moving objects modeled with unknown parameterized shape contour , 2004, IEEE International Conference on Networking, Sensing and Control, 2004.

[20]  Chi-Yi Tsai,et al.  Visual Tracking Control of a Wheeled Mobile Robot With System Model and Velocity Quantization Robustness , 2009, IEEE Transactions on Control Systems Technology.

[21]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[22]  R. A. McLaughlin,et al.  Randomized Hough transform: better ellipse detection , 1996, Proceedings of Digital Processing Applications (TENCON '96).

[23]  Danica Kragic,et al.  Tracking techniques for visual servoing tasks , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  Ju-Jang Lee,et al.  Visual tracking using Snake for object's discrete motion , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[25]  Andrew W. Fitzgibbon,et al.  Ellipse-specific direct least-square fitting , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[26]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[27]  Fumio Miyazaki,et al.  Precise planar positioning using visual servoing based on coarse optical flow , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).