Real-Time Density and Mode Estimation With Application to Time-Dynamic Mode Tracking

We introduce a nonparametric time-dynamic kernel type density estimate for the situation where an underlying multivariate distribution evolves with time. Based on this time-dynamic density estimate, we propose nonparametric estimates for the time-dynamic mode of the underlying distribution. Our estimators involve boundary kernels for the time dimension so that the estimator is always centered at current time, and multivariate kernels for the spatial dimension of the time-evolving distribution. Under certain mild conditions, the asymptotic behavior of density and mode estimators, especially their uniform convergence in both time and space, is derived. A time-dynamic algorithm for mode tracking is proposed, including automatic bandwidth choices, and is implemented via a mean update algorithm. Simulation studies and real data illustrations demonstrate that the proposed methods work well in practice.

[1]  Hans-Georg Müller,et al.  On Local Moments , 2001 .

[2]  Hans-Georg Müller,et al.  Smooth optimum kernel estimators near endpoints , 1991 .

[3]  M. Hazelton,et al.  Plug-in bandwidth matrices for bivariate kernel density estimation , 2003 .

[4]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[5]  W. Eddy Optimum Kernel Estimators of the Mode , 1980 .

[6]  Larry S. Davis,et al.  Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Color Modeling and Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  M. C. Jones,et al.  Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation , 1993 .

[8]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[9]  Liang Peng,et al.  On prediction intervals based on predictive likelihood or bootstrap methods. , 1999 .

[10]  M. C. Jones,et al.  Simple boundary correction for kernel density estimation , 1993 .

[11]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[12]  Ola Hössjer,et al.  On-line density estimators with high efficiency , 1995, IEEE Trans. Inf. Theory.

[13]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[14]  H. Müller,et al.  Kernels for Nonparametric Curve Estimation , 1985 .

[15]  H. Müller,et al.  Hazard rate estimation under random censoring with varying kernels and bandwidths. , 1994, Biometrics.

[16]  Edward J. Wegman,et al.  Remarks on Some Recursive Estimators of a Probability Density , 1979 .

[17]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  V. D. Konakov On the Asymptotic Normality of the Mode of Multidimensional Distributions , 1974 .

[19]  David J. Marchette,et al.  On Some Techniques for Streaming Data: A Case Study of Internet Packet Headers , 2003 .

[20]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  P. Hall,et al.  Data sharpening as a prelude to density estimation , 1999 .

[22]  B. Sayers,et al.  A pattern-analysis study of a wild-life rabies epizootic , 1977 .

[23]  Prakash N. Patil,et al.  On the Efficiency of On-Line Density Estimators , 1994, IEEE Trans. Inf. Theory.

[24]  Peter Hall,et al.  Nonparametric Approach to Analysis of Space-Time Data on Earthquake Occurrences , 1999 .

[25]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[26]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[27]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.