Imaka: a ground-layer adaptive optics system on Maunakea

We present the integration status for 'imaka, the ground-layer adaptive optics (GLAO) system on the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. This wide-field GLAO pathfinder system exploits Maunakea's highly confined ground layer and weak free-atmosphere to push the corrected field of view to ∼1/3 of a degree, an areal field approaching an order of magnitude larger than any existing or planned GLAO system, with a FWHM ∼ 0.33" in the visible and near infrared. We discuss the unique design aspects of the instrument, the driving science cases and how they impact the system, and how we will demonstrate these cases on the sky.

[1]  Simon Thibault,et al.  `imaka: a path-finder ground-layer adaptive optics system for the University of Hawaii 2.2-meter telescope on Maunakea , 2014, Astronomical Telescopes and Instrumentation.

[2]  Charles P. Cavedoni,et al.  Gemini multiconjugate adaptive optics system review - I. Design, trade-offs and integration , 2013, 1310.6199.

[3]  David R. Andersen,et al.  Status of the Raven MOAO science demonstrator , 2012, Other Conferences.

[4]  N. M. Milton,et al.  ON-SKY WIDE-FIELD ADAPTIVE OPTICS CORRECTION USING MULTIPLE LASER GUIDE STARS AT THE MMT , 2008, 0812.0352.

[5]  Roberto Tighe,et al.  SAM: a facility GLAO instrument , 2008, Astronomical Telescopes + Instrumentation.

[6]  A. Sevin,et al.  MOAO first on-sky demonstration with CANARY , 2011 .

[7]  Yosuke Minowa,et al.  An overview of current and future instrumentation at the Subaru telescope , 2016, Astronomical Telescopes + Instrumentation.

[8]  Pravin Chordia,et al.  Bringing the Visible Universe into Focus with Robo-AO , 2013, Journal of visualized experiments : JoVE.

[9]  C. Baranec,et al.  A ground-layer adaptive optics system with multiple laser guide stars , 2010, Nature.

[10]  G. Springer,et al.  Moisture Absorption and Desorption of Composite Materials , 1976 .

[11]  Simone Esposito,et al.  The ARGOS laser system: green light for ground layer adaptive optics at the LBT , 2014, Astronomical Telescopes and Instrumentation.

[12]  Mark Chun,et al.  Mauna Kea ground-layer characterization campaign , 2009 .

[13]  Pravin Chordia,et al.  HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS , 2014, 1407.8179.

[14]  Steve Hegwer,et al.  Solar multiconjugate adaptive optics at the Dunn Solar Telescope: preliminary results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  Bernard Delabre,et al.  On-sky Testing of the Multi-Conjugate Adaptive Optics Demonstrator , 2007 .

[16]  Thomas Pfrommer,et al.  Mesospheric dynamics and ground-layer optical turbulence studies for the performance of ground-based telescopes , 2010 .

[17]  Christoph Baranec,et al.  Loki: a ground-layer adaptive optics high-resolution near-infrared survey camera , 2007, SPIE Optical Engineering + Applications.

[18]  Thomas Berkefeld,et al.  GREGOR MCAO looking at the Sun , 2014, Astronomical Telescopes and Instrumentation.

[19]  Jean-Pierre Véran,et al.  Imaka: a Lagrange invariant of ELTs , 2010, Astronomical Telescopes + Instrumentation.

[20]  J. Seguel,et al.  Thirty Meter Telescope Site Testing I: Overview , 2009, 0904.1183.

[21]  Thomas Rimmele,et al.  The multi-conjugate adaptive optics system of the New Solar Telescope at Big Bear Solar Observatory , 2014, Astronomical Telescopes and Instrumentation.