Extensions of Classical Multidimensional Scaling via Variable Reduction

SummaryClassical multidimensional scaling constructs a configuration of points that minimizes a certain measure of discrepancy between the configuration's interpoint distance matrix and a fixed dissimilarity matrix. Recent extensions have replaced the fixed dissimilarity matrix with a closed and convex set of dissimilarity matrices. These formulations replace fixed dissimilarities with optimization variables (disparities) that are permitted to vary subject to application-specific constraints. For example, simple bound constraints are suitable for distance matrix completion problems (Trosset, 2000) and for inferring molecular conformation from information about interatomic distances (Trosset, 1998b); whereas order constraints are suitable for nonmetric multidimensional scaling (Trosset, 1998a). This paper describes the computational theory that provides a common foundation for these formulations.

[1]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[2]  Marcos Raydan,et al.  Molecular conformations from distance matrices , 1993, J. Comput. Chem..

[3]  Willem J. Heiser,et al.  13 Theory of multidimensional scaling , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[4]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[5]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[6]  M. Trosset Numerical Algorithms for Multidimensional Scaling , 1997 .

[7]  Michael W. Trosset,et al.  Distance Matrix Completion by Numerical Optimization , 2000, Comput. Optim. Appl..

[8]  R. Sibson Studies in the Robustness of Multidimensional Scaling: Perturbational Analysis of Classical Scaling , 1979 .

[9]  G. McCormick,et al.  The Gradient Projection Method under Mild Differentiability Conditions , 1972 .

[10]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[11]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[12]  Takayuki Saito,et al.  The problem of the additive constant and eigenvalues in metric multidimensional scaling , 1978 .

[13]  M. Trosset A New Formulation of the Nonmetric Strain Problem in Multidimensional Scaling , 1998 .

[14]  Pedro Barahona,et al.  Applying Constraint Programming to Protein Structure Determination , 1999, CP.

[15]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[16]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[17]  A. S. Lewis,et al.  Derivatives of Spectral Functions , 1996, Math. Oper. Res..

[18]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[19]  Teresa Anne Parks Reducible Nonlinear Programming Problems , 1985 .

[20]  F. Critchley On certain linear mappings between inner-product and squared-distance matrices , 1988 .

[21]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[22]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[23]  K. Mardia Some properties of clasical multi-dimesional scaling , 1978 .

[24]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[25]  L. Trefethen,et al.  Numerical linear algebra , 1997 .