Characteristics polynomial of normalized Laplacian for trees

Here, we find the characteristics polynomial of normalized Laplacian of a tree. The coefficients of this polynomial are expressed by the higher order general Randic indices for matching, whose values depend on the structure of the tree. We also find the expression of these indices for starlike tree and a double-starlike tree, Hm(p, q). Moreover, we show that two cospectral Hm(p, q) of the same diameter are isomorphic.

[1]  Xueliang Li,et al.  A Survey on the Randic Index , 2008 .

[2]  On the Higher Randić Index , 2013 .

[3]  W. Shiu,et al.  On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph , 2013 .

[4]  Xiaogang Liu,et al.  One special double starlike graph is determined by its Laplacian spectrum , 2009, Appl. Math. Lett..

[5]  Yongtang Shi,et al.  Note on two generalizations of the Randić index , 2015, Appl. Math. Comput..

[6]  Noureddine Aïssaoui On the A-Laplacian , 2003 .

[7]  Anirban Banerjee,et al.  Effect on normalized graph Laplacian spectrum by motif attachment and duplication , 2012, Appl. Math. Comput..

[8]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[9]  Shaun M. Fallat,et al.  On the normalized Laplacian energy and general Randić index R-1 of graphs , 2010 .

[10]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[11]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[12]  Ratko Darda,et al.  Trees of Given Order and Independence Number with Minimal First Zagreb index , 2014 .

[13]  Anirban Banerjee,et al.  Graph spectra as a systematic tool in computational biology , 2007, Discret. Appl. Math..

[14]  Juan Rada,et al.  Higher order connectivity index of starlike trees , 2002, Discret. Appl. Math..

[15]  Anirban Banerjee,et al.  On the spectrum of the normalized graph Laplacian , 2007, 0705.3772.

[16]  Lihua Feng,et al.  On Connective Eccentricity Index of Graphs 1 , 2013 .

[17]  Kexiang Xu,et al.  Maximizing the Zagreb indices of (n;m)-graphs 1 , 2014 .

[18]  Hosam Abdo,et al.  Estimating the spectral radius of a graph by the second Zagreb index , 2014 .

[19]  I. Gutman,et al.  Three New/Old Vertex-Degree-Based Topological Indices , 2014 .

[20]  M. Randic Characterization of molecular branching , 1975 .

[21]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[22]  Hong Lin On Segments, Vertices of Degree Two and the First Zagreb Index of Trees , 2014 .

[23]  J. Jost,et al.  Minimum Vertex Covers and the Spectrum of the Normalized Laplacian on Trees , 2010, 1010.4269.

[24]  Juan Rada,et al.  Vertex-Degree-Based Topological Indices Over Graphs , 2014 .

[25]  I. Gutman,et al.  Matchings in starlike trees , 2001, Appl. Math. Lett..

[26]  Lang Tang,et al.  On the connective eccentricity index of trees and unicyclic graphs with given diameter , 2014 .

[27]  Lingsheng Shi,et al.  Bounds on Randic indices , 2009, Discret. Math..

[29]  J. A. Rodŕıguez A spectral approach to the Randić index , 2005 .

[30]  Ivan Gutman An Exceptional Property of First Zagreb Index , 2014 .

[31]  Mirjana Lazic Some results on symmetric double starlike trees , 2006 .

[32]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[33]  Xueliang Li,et al.  On a relation between the Randic index and the chromatic number , 2010, Discret. Math..