On Schrödinger maps

We study the local well-posedness theory for the Schr\"odinger Maps equation. We work in $n+1$ dimensions, for $n \geq 2$, and prove a local well-posedness for small initial data in $H^{\frac{n}{2}+ \varepsilon}$.

[1]  Luis Vega,et al.  Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations , 1998 .

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  D. Tataru Local and global results for wave maps I , 1998 .

[4]  C. Kenig,et al.  Low-regularity Schrödinger maps , 2006, Differential and Integral Equations.

[5]  H. McGahagan An Approximation Scheme for Schrödinger Maps , 2007 .

[6]  Daniel Tataru,et al.  Rough solutions for the wave maps equation , 2005 .

[7]  千原 浩之 Gain of regularity for semilinear Schrodinger equations (調和解析学と非線形偏微分方程式) , 2000 .

[8]  Kenneth B. Huber Department of Mathematics , 1894 .

[9]  Claude Bardos,et al.  On the continuous limit for a system of classical spins , 1986 .

[10]  W. Ding,et al.  Local Schrödinger flow into Kähler manifolds , 2001 .

[11]  H. Chihara Gain of regularity for semilinear Schrödinger equations , 1999 .

[12]  Karen K. Uhlenbeck,et al.  On Schrödinger maps , 2003 .

[13]  J. Kato,et al.  Uniqueness of the Modified Schrödinger Map in H 3/4+ϵ(ℝ2) , 2007 .

[14]  Daniel Tataru,et al.  The wave maps equation , 2004 .

[15]  C. Kenig,et al.  The Cauchy problem for the hyperbolic–elliptic Ishimori system and Schrödinger maps , 2005 .

[16]  Terence Tao Global Regularity of Wave Maps¶II. Small Energy in Two Dimensions , 2001 .

[17]  D. Tataru On global existence and scattering for the wave maps equation , 2001 .

[18]  S. Gustafson,et al.  Schrödinger Flow near Harmonic Maps , 2005 .

[19]  J. Kato,et al.  Existence and uniqueness of the solution to the modified Schrödinger map , 2005 .