A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique

In this paper, the crack growth simulation is presented in saturated porous media using the extended finite element method. The mass balance equation of fluid phase and the momentum balance of bulk and fluid phases are employed to obtain the fully coupled set of equations in the framework of $$u{-}p$$u-p formulation. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. The spatial discritization is performed using the extended finite element method, the time domain discritization is performed based on the generalized Newmark scheme, and the non-linear system of equations is solved using the Newton–Raphson iterative procedure. In the context of the X-FEM, the discontinuity in the displacement field is modeled by enhancing the standard piecewise polynomial basis with the Heaviside and crack-tip asymptotic functions, and the discontinuity in the fluid flow normal to the fracture is modeled by enhancing the pressure approximation field with the modified level-set function, which is commonly used for weak discontinuities. Two alternative computational algorithms are employed to compute the interfacial forces due to fluid pressure exerted on the fracture faces based on a ‘partitioned solution algorithm’ and a ‘time-dependent constant pressure algorithm’ that are mostly applicable to impermeable media, and the results are compared with the coupling X-FEM model. Finally, several benchmark problems are solved numerically to illustrate the performance of the X-FEM method for hydraulic fracture propagation in saturated porous media.

[1]  Jamshid Ghaboussi,et al.  Variational Formulation of Dynamics of Fluid-Saturated Porous Elastic Solids , 1972 .

[2]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[3]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[4]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[5]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[6]  Julien Réthoré,et al.  A Numerical Approach for Arbitrary Cracks in a Fluid-Saturated Medium , 2006 .

[7]  S. Kowalski,et al.  A plasticity theory for fluid-saturated porous solids , 1983 .

[8]  O. Zienkiewicz,et al.  Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution , 1984 .

[9]  Amir R. Khoei,et al.  Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique , 2008 .

[10]  WaiChing Sun,et al.  A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain , 2013 .

[11]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[12]  M. Biot,et al.  THE ELASTIC COEFFICIENTS OF THE THEORY OF CONSOLIDATION , 1957 .

[13]  Ahmad Ghassemi,et al.  Simulation of hydraulic fracture propagation near a natural fracture using virtual multidimensional internal bonds , 2011 .

[14]  Julien Réthoré,et al.  A two‐scale approach for fluid flow in fractured porous media , 2006 .

[15]  Antonio Gens,et al.  Finite element formulation and algorithms for unsaturated soils. Part I: Theory , 2003 .

[16]  A. Khoei,et al.  An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model , 2013 .

[17]  A. Chan A unified finite element solution to static and dynamic problems of geomechanics , 1988 .

[18]  Amir R. Khoei,et al.  Implementation of plasticity based models in dynamic analysis of earth and rockfill dams: A comparison of Pastor–Zienkiewicz and cap models , 2004 .

[19]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[20]  Amir R. Khoei,et al.  An enriched finite element algorithm for numerical computation of contact friction problems , 2007 .

[21]  J. S. Y. Wang,et al.  Validity of cubic law for fluid flow in a deformable rock fracture. Technical information report No. 23 , 1979 .

[22]  K. Karimi,et al.  An enriched-FEM model for simulation of localization phenomenon in Cosserat continuum theory , 2008 .

[23]  M. Pastor,et al.  Static and dynamic behaviour of soils : a rational approach to quantitative solutions. I. Fully saturated problems , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  P. M. Naghdi,et al.  ON BASIC EQUATIONS FOR MIXTURES. , 1969 .

[25]  Luciano Simoni,et al.  A coupled model for water flow, airflow and heat flow in deformable porous media , 1995 .

[26]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[27]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[28]  Y S Wu,et al.  On the selection of primary variables in numerical formulation for modeling multiphase flow in porous media. , 2001, Journal of contaminant hydrology.

[29]  Amir R. Khoei,et al.  An extended arbitrary Lagrangian-Eulerian finite element method for large deformation of solid mechanics , 2008 .

[30]  René de Borst,et al.  A discrete model for the dynamic propagation of shear bands in a fluid‐saturated medium , 2007 .

[31]  Amir R. Khoei,et al.  Extended finite element modeling of deformable porous media with arbitrary interfaces , 2011 .

[32]  J. Rice,et al.  Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents , 1976 .

[33]  Bernhard A. Schrefler,et al.  On adaptive refinement techniques in multi-field problems including cohesive fracture , 2006 .

[34]  David L. Chopp,et al.  Modeling thermal fatigue cracking in integrated circuits by level sets and the extended finite element method , 2003 .

[35]  A. V. Akulich,et al.  Interaction between hydraulic and natural fractures , 2008 .

[36]  Bernhard A. Schrefler,et al.  A FULLY COUPLED MODEL FOR WATER FLOW AND AIRFLOW IN DEFORMABLE POROUS MEDIA , 1993 .

[37]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[38]  A. Khoei Extended Finite Element Method: Theory and Applications , 2015 .

[39]  Thomas J. Boone,et al.  A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media , 1990 .

[40]  Jean-Herve Prevost,et al.  Stabilization procedures in coupled poromechanics problems: A critical assessment , 2011 .

[41]  A. Ledesma,et al.  Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[43]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[44]  A. Khoei,et al.  Hydro‐mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method , 2013 .

[45]  Roland W. Lewis,et al.  Finite element modelling of multiphase immiscible flow in deforming porous media for subsurface systems , 1999 .

[46]  A. Needleman,et al.  The simulation of dynamic crack propagation using the cohesive segments method , 2008 .

[47]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[48]  Emmanuel M Detournay,et al.  Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks , 2004 .

[49]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[50]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[51]  H. Moslemi,et al.  Modeling of cohesive crack growth using an adaptive mesh refinement via the modified-SPR technique , 2009 .

[52]  Günter Hofstetter,et al.  Adaptive finite element analysis of multi-phase problems in geotechnics , 2005 .

[53]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[54]  Massood Mofid,et al.  Modeling of cohesive crack growth in partially saturated porous media; a study on the permeability of cohesive fracture , 2011 .

[55]  P. W. Sharp,et al.  Self-similar solutions for elastohydrodynamic cavity flow , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[56]  Bernhard A. Schrefler,et al.  A staggered finite-element solution for water and gas flow in deforming porous media , 1991 .

[57]  D. A. Spence,et al.  Transport of magma and hydrothermal solutions by laminar and turbulent fluid fracture , 1986 .

[58]  Günter Hofstetter,et al.  Numerical simulation of geotechnical problems based on a multi-phase finite element approach , 2004 .

[59]  P. Comba,et al.  Part I. Theory , 2007 .

[60]  Leslie Morland,et al.  A simple constitutive theory for a fluid-saturated porous solid , 1972 .

[61]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[62]  Francisco Armero,et al.  Strong discontinuities in partially saturated poroplastic solids , 2010 .

[63]  Bernhard A. Schrefler,et al.  Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials , 2007 .

[64]  Massood Mofid,et al.  Modeling of dynamic cohesive fracture propagation in porous saturated media , 2011 .

[65]  J. Hutchinson,et al.  On toughening by microcracks , 1990 .

[66]  Amir R. Khoei,et al.  3D adaptive finite element modeling of non-planar curved crack growth using the weighted superconvergent patch recovery method , 2009 .

[67]  U. N. Baton “Computational geomechanics-with special reference to earthquake engineering” by O. C. Zienkiewicz, A. H. C. Chan, M. Paston, B. A. Schrefler and T. Shiomi , 2000 .

[68]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[69]  C. J. de Pater,et al.  Numerical implementation of displacement discontinuity method and its application in hydraulic fracturing , 2001 .

[70]  Surendra P. Shah,et al.  Features of mechanics of quasi-brittle crack propagation in concrete , 1991, International Journal of Fracture.

[71]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[72]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[73]  J. Geertsma,et al.  A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures , 1969 .

[74]  Roberto Scotta,et al.  A fully coupled dynamic model for two-phase fluid flow in deformable porous media , 2001 .

[75]  G. Zhao,et al.  Particle manifold method (PMM): A new continuum‐discontinuum numerical model for geomechanics , 2013 .