A note on multicolor Ramsey number of small odd cycles versus a large clique
暂无分享,去创建一个
[1] Vojtech Rödl,et al. Sharp Bounds For Some Multicolor Ramsey Numbers , 2005, Comb..
[2] Vladimir Nikiforov,et al. The Cycle-Complete Graph Ramsey Numbers , 2004, Combinatorics, Probability and Computing.
[3] F. Buekenhout. An Introduction to Incidence Geometry , 1995 .
[4] Yuval Wigderson. An improved lower bound on multicolor Ramsey numbers , 2020, Proceedings of the American Mathematical Society.
[5] Peter Keevash,et al. The early evolution of the H-free process , 2009, 0908.0429.
[6] Benny Sudakov. A Note on Odd Cycle-Complete Graph Ramsey Numbers , 2002, Electron. J. Comb..
[7] G. Szekeres,et al. A combinatorial problem in geometry , 2009 .
[8] A. Sah. Diagonal Ramsey via effective quasirandomness , 2020, Duke Mathematical Journal.
[9] Jacques Verstraëte,et al. A note on Pseudorandom Ramsey graphs , 2019, Journal of the European Mathematical Society.
[10] Yair Caro,et al. Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers , 2000, Discret. Math..
[11] D. Conlon. A new upper bound for diagonal Ramsey numbers , 2006, math/0607788.
[12] János Komlós,et al. A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.
[13] S. Radziszowski. Small Ramsey Numbers , 2011 .
[14] P. Erdös. Some remarks on the theory of graphs , 1947 .
[15] Joel H. Spencer,et al. Ramsey's Theorem - A New Lower Bound , 1975, J. Comb. Theory, Ser. A.
[16] H. Maldeghem,et al. Some combinatorial and geometric characterizations of the finite dual classical generalized hexagons , 2000 .
[17] Jeong Han Kim,et al. The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.