A note on multicolor Ramsey number of small odd cycles versus a large clique

Let Rk(H;Km) be the smallest number N such that every coloring of the edges of KN with k + 1 colors has either a monochromatic H in color i for some 1 6 i 6 k, or a monochromatic Km in color k + 1. In this short note, we study the lower bound for Rk(H;Km) when H is C5 or C7, respectively. We show that Rk(C5;Km) = Ω(m 3k 8 /(logm) 3k 8 ), and Rk(C7;Km) = Ω(m 2k 9 /(logm) 2k 9 ), for fixed positive integer k and m → ∞. These slightly improve the previously known lower bound Rk(C2l+1;Km) = Ω(m k 2l−1 /(logm) 2k 2l−1 ) obtained by Alon and Rödl. The proof is based on random block constructions and random blowups argument.

[1]  Vojtech Rödl,et al.  Sharp Bounds For Some Multicolor Ramsey Numbers , 2005, Comb..

[2]  Vladimir Nikiforov,et al.  The Cycle-Complete Graph Ramsey Numbers , 2004, Combinatorics, Probability and Computing.

[3]  F. Buekenhout An Introduction to Incidence Geometry , 1995 .

[4]  Yuval Wigderson An improved lower bound on multicolor Ramsey numbers , 2020, Proceedings of the American Mathematical Society.

[5]  Peter Keevash,et al.  The early evolution of the H-free process , 2009, 0908.0429.

[6]  Benny Sudakov A Note on Odd Cycle-Complete Graph Ramsey Numbers , 2002, Electron. J. Comb..

[7]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[8]  A. Sah Diagonal Ramsey via effective quasirandomness , 2020, Duke Mathematical Journal.

[9]  Jacques Verstraëte,et al.  A note on Pseudorandom Ramsey graphs , 2019, Journal of the European Mathematical Society.

[10]  Yair Caro,et al.  Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers , 2000, Discret. Math..

[11]  D. Conlon A new upper bound for diagonal Ramsey numbers , 2006, math/0607788.

[12]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[13]  S. Radziszowski Small Ramsey Numbers , 2011 .

[14]  P. Erdös Some remarks on the theory of graphs , 1947 .

[15]  Joel H. Spencer,et al.  Ramsey's Theorem - A New Lower Bound , 1975, J. Comb. Theory, Ser. A.

[16]  H. Maldeghem,et al.  Some combinatorial and geometric characterizations of the finite dual classical generalized hexagons , 2000 .

[17]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.