Transmission dynamics of lymphatic filariasis: vector‐specific density dependence in the development of Wuchereria bancrofti infective larvae in mosquitoes

Abstract The principles of meta‐analysis developed in a previous study were extended to investigate the process of Wuchereria bancrofti (Cobbold) (Filarioidea: Onchocercidae) infection in mosquito (Diptera: Culicidae) hosts, focusing specifically on the functional forms and strength of density dependence in the development of ingested microfilariae (mf) to infective (third instar) larvae (L3). Mathematical models describing observed mf−L3 functional responses for each of the major three parasite‐transmitting vector genera, Aedes, Culex and Anopheles mosquitoes, were fitted to paired mf−L3 data collated from all available studies in the published literature. Model parameters were estimated and compared by deriving and applying a data synthetic framework, based on applying a non‐linear weighted regression model for fitting mathematical models to multistudy data. The results confirm previous findings of the existence of significant between‐genera differences in the mf−L3 development relationship, particularly with regard to the occurrence of limitation in Culex mosquitoes and facilitation in Aedes and Anopheles mosquitoes. New and unexpected findings regarding L3 development from ingested mf were discovered as follows: (1) for Culex, overcompensation in L3 development at higher intensities of mf (or a peaked mf−L3 functional response) was detected; (2) for Aedes mosquitoes, facilitation (with an apparent asymptotic constraint on L3 development at high mf densities) was shown to be the major process governing L3 development, and (3) for Anopheles, a stronger facilitation type of response with no apparent saturation in L3 development appears to govern L3 output from ingested mf. These results yield major new insights regarding filarial vector infection dynamics and their potential impacts on parasite control, and demonstrate the efficacy of employing a data synthetic approach to reveal and estimate parasitic infection processes in host populations.

[1]  C. Dye,et al.  Does facilitation imply a threshold for the eradication of lymphatic filariasis? , 1992, Parasitology today.

[2]  Sebastian Bonhoeffer,et al.  Dose–dependent infection rates of parasites produce the Allee effect in epidemiology , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  J. Bryan,et al.  Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 4. Facilitation, limitation, proportionality and their epidemiological significance. , 1992, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[4]  J. Bryan,et al.  Some observations on filariasis in Western Samoa after mass administration of diethylcarbamazine. , 1976, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[5]  Rajagopalan Pk,et al.  Some aspects of transmission of Wuchereria bancrofti and ecology of the vector Culex pipiens fatigans in Pondicherry. , 1977 .

[6]  Abd-Eldayem Msa A study of the quantitative relationship between the blood density of Wuchereria bancrofti microfilariae and development of infective larvae in Culex pipens molestus in Egypt. , 1987 .

[7]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[8]  P. Glaziou,et al.  Variation in the vector competence of Aedes polynesiensis for Wuchereria bancrofti , 1995, Parasitology.

[9]  N. Kolstrup,et al.  The lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae. , 1978, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[10]  W. Crans Experimental infection of Anopheles gambiae and Culex pipiens fatigans with Wuchereria bancrofti in coastal East Africa. , 1973, Journal of medical entomology.

[11]  J. Kessel,et al.  Treatment failure in filariasis mass treatment programmes. , 1971, Bulletin of the World Health Organization.

[12]  Xiao-Hua Zhou,et al.  Statistical Methods for Meta‐Analysis , 2008 .

[13]  G. Pichon Relations mathématiques entre le nombre des microfilaires ingérées et le nombre des parasites chez différents vecteurs naturels ou expérimentaux de filarioses , 1974 .

[14]  Guy Barker,et al.  Mathematical modelling and the control of lymphatic filariasis. , 2004, The Lancet. Infectious diseases.

[15]  G. Spears,et al.  Filariasis transmission in Samoa. II. Some factors related to the development of microfilariae in the intermediate host. , 1985, Annals of tropical medicine and parasitology.

[16]  P. McGreevy,et al.  Brugian filariasis: epidemiological and experimental studies. , 1977, Advances in parasitology.

[17]  O. Bain,et al.  Passage des microfilaires de l'estomac vers l'hémocèle du vecteur, dans les couples Wuchereria bancrofti - Anopheles gambiae A, W. bancrofti - Aedes aegypti et Setaria labiatopapillosa - A. aegypti , 1972 .

[18]  R. Schall Estimation in generalized linear models with random effects , 1991 .

[19]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[20]  R M May,et al.  Helminth infections of humans: mathematical models, population dynamics, and control. , 1985, Advances in parasitology.

[21]  G. Arnqvist,et al.  Meta-analysis: synthesizing research findings in ecology and evolution. , 1995, Trends in ecology & evolution.

[22]  D. Gasarasi,et al.  The transmission dynamics of bancroftian filariasis: the distribution of the infective larvae of Wuchereria bancrofti in Culex quinquefasciatus and Anopheles gambiae and its effect on parasite escape from the vector. , 2000, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[23]  Robert D. Holt,et al.  RESOLVING ECOLOGICAL QUESTIONS THROUGH META‐ANALYSIS: GOALS, METRICS, AND MODELS , 1999 .

[24]  R. Hilborn,et al.  Fisheries stock assessment and decision analysis: the Bayesian approach , 1997, Reviews in Fish Biology and Fisheries.

[25]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[26]  P. Williams,et al.  A comparison of two Brazilian populations of Culex quinquefasciatus (Say, 1823) from endemic and non-endemic areas to infection with Wuchereria bancrofti (Cobbold, 1877). , 1997, Memorias do Instituto Oswaldo Cruz.

[27]  K. Wilson,et al.  Parasites as a Viability Cost of Sexual Selection in Natural Populations of Mammals , 2002, Science.

[28]  P. Rajagopalan,et al.  Some aspects of transmission of Wuchereria bancrofti and ecology of the vector Culex pipiens fatigans in Pondicherry. , 1977, The Indian journal of medical research.

[29]  J. Prod'hon,et al.  Etude quantitative de la réduction parasitaire stomacale chez les vecteurs de filarioses , 1980 .

[30]  E. Michael,et al.  Transmission dynamics of lymphatic filariasis: density‐dependence in the uptake of Wuchereria bancrofti microfilariae by vector mosquitoes , 2002, Medical and veterinary entomology.

[31]  K. Ramaiah,et al.  Epifil: a dynamic model of infection and disease in lymphatic filariasis. , 1998, The American journal of tropical medicine and hygiene.

[32]  J. Bryan,et al.  Factors affecting transmission of Wuchereria bancrofti by anopheline mosquitoes. 2. Damage to ingested microfilariae by mosquito foregut armatures and development of filarial larvae in mosquitoes. , 1988, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[33]  H. Townson,et al.  Mosquito host influences on development of filariae. , 1991, Annals of tropical medicine and parasitology.

[34]  P. Jordan,et al.  Bancroftian filariasis in Tanganyika: a quantitative study of the uptake, fate and development of microfilariae of Wuchereria bancrofti in Culex fatigans. , 1962 .

[35]  R. Webber Can anopheline-transmitted filariasis be eradicated? , 1991, The Journal of tropical medicine and hygiene.

[36]  Webber Rh Can anopheline-transmitted filariasis be eradicated? , 1991 .

[37]  N. Kolstrup,et al.  Ingestion and development of Wuchereria bancrofti in Culex quinquefasciatus, Anopheles gambiae and Aedes aegypti after feeding on humans with varying densities of microfilariae in Tanzania. , 1982, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[38]  M. Takagi,et al.  Facilitation in Anopheles and spontaneous disappearance of filariasis: has the concept been verified with sufficient evidence? , 1995, Tropical medicine and parasitology : official organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft fur Technische Zusammenarbeit.

[39]  L. Rosin OBSERVATIONS ON THE EPIDEMIOLOGY OF HUMAN FILARIASIS IN FRENCH OCEANIA , 1955 .

[40]  G. Pichon Limitation and facilitation in the vectors and other aspects of the dynamics of filarial transmission: the need for vector control against Anopheles-transmitted filariasis. , 2002, Annals of tropical medicine and parasitology.

[41]  H. Gelfand Studies on the vectors of Wuchereria bancrofti in Liberia. , 1955, The American journal of tropical medicine and hygiene.

[42]  Grenfell,et al.  Inverse density dependence and the Allee effect. , 1999, Trends in ecology & evolution.

[43]  Jerald B. Johnson,et al.  Model selection in ecology and evolution. , 2004, Trends in ecology & evolution.

[44]  Robert Poulin,et al.  Sexual Inequalities in Helminth Infections: A Cost of Being a Male? , 1996, The American Naturalist.

[45]  G D Ruxton,et al.  Population dynamic consequences of allee effects. , 2002, Journal of theoretical biology.

[46]  A. Rosenberg,et al.  Population Dynamics of Exploited Fish Stocks at Low Population Levels , 1995, Science.

[47]  K. Dietz,et al.  The population dynamics of onchocerciasis , 1982 .

[48]  R. Myers Stock and recruitment: generalizations about maximum reproductive rate, density dependence, and variability using meta-analytic approaches , 2001 .

[49]  Ding-Geng Chen,et al.  Incorporating Allee effects in fish stock-recruitment models and applications for determining reference points , 2002 .

[50]  Marcel Abendroth Analyzing Medical Data Using S-PLUS , 2002 .

[51]  O. Bain,et al.  [Transmission of wuchereriasis and of bovine setariasis: histological study of the passage of microfilariae through the stomach wall of Anopheles gambiae A and Aedes aegypti]. , 1972, Annales de parasitologie humaine et comparee.

[52]  Ransom A. Myers,et al.  Reducing uncertainty in the biological basis of fisheries management by meta-analysis of data from many populations: a synthesis , 1998 .

[53]  J. Laigret,et al.  [Parasite yield in filariasis vectors]. , 1974, Bulletin of the World Health Organization.

[54]  J D Habbema,et al.  The LYMFASIM Simulation Program for Modeling Lymphatic Filariasis and its Control , 1998, Methods of Information in Medicine.

[55]  J. Habbema,et al.  The relationship between microfilarial load in the human host and uptake and development of Wuchereria bancrofti microfilariae by Culex quinquefasciatus: a study under natural conditions , 1998, Parasitology.

[56]  B. Grenfell,et al.  The association between microfilaraemia and disease in lymphatic filariasis , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  C. Curtis,et al.  The susceptibility of Liberian Culex quinquefasciatus to Wuchereria bancrofti in Sri Lanka. , 1980, Tropenmedizin und Parasitologie.

[58]  O. Bain,et al.  Transmission de la Wuchereriose et de la Sétariose bovine : - Etude histologique de la traversée de la paroi stomacale d’Anopheles gambiae A et d’Aedes aegypti par les microfilaires , 1972 .

[59]  G. Spears,et al.  Filariasis transmission in Samoa. I. Relation between density of microfilariae and larval density in laboratory-bred and wild-caught Aedes (Stegomyia) polynesiensis (Marks) and wild-caught Aedes (Finlaya) samoanus (Gruenberg). , 1985, Annals of tropical medicine and parasitology.

[60]  R. Anderson,et al.  Density-dependent processes in the transmission of human onchocerciasis: relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector , 1995, Parasitology.

[61]  K. Kalpage,et al.  The significance of low density microfilaraemia in the transmission of Wuchereria bancrofti by Culex (Culex) quinquefasciatus Say in Sri Lanka. , 1991, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[62]  K. Ramaiah,et al.  EPIFIL: The development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis , 2000, Epidemiology and Infection.

[63]  S. Zhang,et al.  Threshold of transmission of Brugia malayi by Anopheles sinensis. , 1991, The Journal of tropical medicine and hygiene.

[64]  M. Boussinesq,et al.  Population biology of human onchocerciasis. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[65]  J. Fak,et al.  Parasites as a Viability Cost of Sexual Selection in Natural Populations of Mammals , 2002 .