Protein conducting nanopores

About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC () containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution ( ms; ms).

[1]  D. Sideris,et al.  Oxidative protein folding in the mitochondrial intermembrane space. , 2010, Antioxidants & redox signaling.

[2]  Anke Harsman,et al.  The mammalian and yeast translocon complexes comprise a characteristic Sec61 channel. , 2010, Biochemical and biophysical research communications.

[3]  Hsou-min Li,et al.  Protein transport into chloroplasts. , 2010, Annual review of plant biology.

[4]  T. F. Miller,et al.  Hydrophobically stabilized open state for the lateral gate of the Sec translocon , 2010, Proceedings of the National Academy of Sciences.

[5]  E. Snapp,et al.  Evolutionary Gain of Function for the ER Membrane Protein Sec62 from Yeast to Humans , 2010, Molecular biology of the cell.

[6]  W. Schliebs,et al.  The peroxisomal importomer constitutes a large and highly dynamic pore , 2010, Nature Cell Biology.

[7]  I. Bertini,et al.  A novel intermembrane space–targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding , 2009, The Journal of cell biology.

[8]  Klaus Schulten,et al.  Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome , 2009, Science.

[9]  Klaus Schulten,et al.  Regulation of the protein-conducting channel by a bound ribosome. , 2009, Structure.

[10]  V. Helms,et al.  Lanthanum ions inhibit the mammalian Sec61 complex in its channel dynamics and protein transport activity , 2009, FEBS letters.

[11]  F. Duong,et al.  The SecY complex forms a channel capable of ionic discrimination , 2009, EMBO reports.

[12]  D. Boehringer,et al.  YidC and Oxa1 form dimeric insertion pores on the translating ribosome. , 2009, Molecular cell.

[13]  Judith M. Müller,et al.  Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. , 2009, Molecular biology of the cell.

[14]  A. Driessen,et al.  The Lateral Gate of SecYEG Opens during Protein Translocation* , 2009, The Journal of Biological Chemistry.

[15]  C. Robinson,et al.  Protein transport in organelles: Protein transport into and across the thylakoid membrane , 2009, The FEBS journal.

[16]  M. Balsera,et al.  Protein import machineries in endosymbiotic organelles , 2009, Cellular and Molecular Life Sciences.

[17]  Tom A Goetze,et al.  Characterization of Tic110, a Channel-forming Protein at the Inner Envelope Membrane of Chloroplasts, Unveils a Response to Ca2+ and a Stromal Regulatory Disulfide Bridge* , 2009, Journal of Biological Chemistry.

[18]  R. Sessions,et al.  Synthetic peptides identify a second periplasmic site for the plug of the SecYEG protein translocation complex , 2009, FEBS letters.

[19]  W. Kühlbrandt,et al.  Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. , 2008, Journal of molecular biology.

[20]  H. Inoue,et al.  Alternative Processing of Arabidopsis Hsp70 Precursors during Protein Import into Chloroplasts , 2008, Bioscience, biotechnology, and biochemistry.

[21]  T. Rapoport,et al.  A role for the two-helix finger of the SecA ATPase in protein translocation , 2008, Nature.

[22]  S. Karamanou,et al.  Assembly of the translocase motor onto the preprotein‐conducting channel , 2008, Molecular microbiology.

[23]  D. Mokranjac,et al.  Energetics of protein translocation into mitochondria. , 2008, Biochimica et biophysica acta.

[24]  P. Jarvis Targeting of nucleus-encoded proteins to chloroplasts in plants. , 2008, The New phytologist.

[25]  Gunnar von Heijne,et al.  How translocons select transmembrane helices. , 2008, Annual review of biophysics.

[26]  L. Movileanu,et al.  Excursion of a single polypeptide into a protein pore: simple physics, but complicated biology , 2008, European Biophysics Journal.

[27]  Thomas Becker,et al.  Dissecting Membrane Insertion of Mitochondrial β-Barrel Proteins , 2008, Cell.

[28]  H. Inoue,et al.  Three Sets of Translocation Intermediates Are Formed during the Early Stage of Protein Import into Chloroplasts* , 2008, Journal of Biological Chemistry.

[29]  R. Waller,et al.  Structure, topology and function of the translocase of the outer membrane of mitochondria. , 2008, Plant physiology and biochemistry : PPB.

[30]  Albert Sickmann,et al.  Multiple pathways for sorting mitochondrial precursor proteins , 2008, EMBO reports.

[31]  N. Pfanner,et al.  Alternative function for the mitochondrial SAM complex in biogenesis of α-helical TOM proteins , 2007, The Journal of Cell Biology.

[32]  N. Pfanner,et al.  Alternative function for the mitochondrial SAM complex in biogenesis of α-helical TOM proteins , 2007, The Journal of cell biology.

[33]  H. Bayley,et al.  Catalyzing the translocation of polypeptides through attractive interactions. , 2007, Journal of the American Chemical Society.

[34]  N. Pfanner,et al.  Motor-free mitochondrial presequence translocase drives membrane integration of preproteins , 2007, Nature Cell Biology.

[35]  D. Sideris,et al.  Oxidative folding of small Tims is mediated by site‐specific docking onto Mia40 in the mitochondrial intermembrane space , 2007, Molecular microbiology.

[36]  B. Clantin,et al.  Structure of the Membrane Protein FhaC: A Member of the Omp85-TpsB Transporter Superfamily , 2007, Science.

[37]  N. Pfanner,et al.  Biogenesis of the Essential Tim9–Tim10 Chaperone Complex of Mitochondria , 2007, Journal of Biological Chemistry.

[38]  Walter Neupert,et al.  Why Do We Still Have a Maternally Inherited Mitochondrial DNA ? Insights from Evolutionary Medicine , 2007 .

[39]  N. Pfanner,et al.  A dynamic machinery for import of mitochondrial precursor proteins , 2007, FEBS letters.

[40]  Sol Schulman,et al.  The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. , 2007, Molecular cell.

[41]  P. Pohl,et al.  Determining the conductance of the SecY protein translocation channel for small molecules. , 2007, Molecular cell.

[42]  J. Skolnick,et al.  Monte-Carlo Simulation , 2022 .

[43]  N. Pfanner,et al.  The morphology proteins Mdm12/Mmm1 function in the major β‐barrel assembly pathway of mitochondria , 2007, The EMBO journal.

[44]  T. Fox,et al.  Translocation of Mitochondrially Synthesized Cox2 Domains from the Matrix to the Intermembrane Space , 2007, Molecular and Cellular Biology.

[45]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[46]  P. Jarvis,et al.  Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. , 2007, The Plant journal : for cell and molecular biology.

[47]  Ian Collinson,et al.  Structure and function of the bacterial Sec translocon (Review) , 2007, Molecular membrane biology.

[48]  W. Neupert,et al.  The N-terminal domain of Tob55 has a receptor-like function in the biogenesis of mitochondrial β-barrel proteins , 2007, The Journal of cell biology.

[49]  K. Mihara,et al.  Cytosolic factor‐ and TOM‐independent import of C‐tail‐anchored mitochondrial outer membrane proteins , 2006, The EMBO journal.

[50]  V. Lemeshko Theoretical evaluation of a possible nature of the outer membrane potential of mitochondria , 2006, European Biophysics Journal.

[51]  R. Hegde,et al.  The surprising complexity of signal sequences. , 2006, Trends in biochemical sciences.

[52]  I. Hwang,et al.  Tic21 Is an Essential Translocon Component for Protein Translocation across the Chloroplast Inner Envelope Membrane , 2006, The Plant Cell Online.

[53]  T. Lithgow,et al.  Evolution of the Molecular Machines for Protein Import into Mitochondria , 2006, Science.

[54]  N. Pfanner,et al.  Tim50 Maintains the Permeability Barrier of the Mitochondrial Inner Membrane , 2006, Science.

[55]  B. Wilkinson,et al.  The Brl Domain in Sec63p Is Required for Assembly of Functional Endoplasmic Reticulum Translocons* , 2006, Journal of Biological Chemistry.

[56]  M. Nakai,et al.  Characterization of the preprotein translocon at the outer envelope membrane of chloroplasts by blue native PAGE. , 2006, Plant & cell physiology.

[57]  T. Lithgow,et al.  Molecular architecture and function of the Omp85 family of proteins , 2005, Molecular microbiology.

[58]  R. Casadio,et al.  Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. , 2005, Journal of molecular biology.

[59]  Doron Rapaport,et al.  How does the TOM complex mediate insertion of precursor proteins into the mitochondrial outer membrane? , 2005, The Journal of cell biology.

[60]  D. Mokranjac,et al.  Protein import into mitochondria. , 2005, Biochemical Society transactions.

[61]  W. Kühlbrandt,et al.  Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. , 2005, Journal of molecular biology.

[62]  W. Neupert,et al.  Biogenesis of β-barrel membrane proteins of mitochondria , 2005 .

[63]  T. Becker,et al.  The Evolutionarily Related β-Barrel Polypeptide Transporters from Pisum sativum and Nostoc PCC7120 Contain Two Distinct Functional Domains* , 2005, Journal of Biological Chemistry.

[64]  J. M. Scholtz,et al.  Interactions of peptides with a protein pore. , 2005, Biophysical journal.

[65]  D. Mokranjac,et al.  Role of Tim21 in Mitochondrial Translocation Contact Sites* , 2005, Journal of Biological Chemistry.

[66]  T. Inaba,et al.  Arabidopsis Tic110 Is Essential for the Assembly and Function of the Protein Import Machinery of Plastidsw⃞ , 2005, The Plant Cell Online.

[67]  S. Richter,et al.  Function of the stromal processing peptidase in the chloroplast import pathway , 2005 .

[68]  Albert Sickmann,et al.  Mitochondrial Presequence Translocase: Switching between TOM Tethering and Motor Recruitment Involves Tim21 and Tim17 , 2005, Cell.

[69]  M. Halić,et al.  The signal recognition particle and its interactions during protein targeting. , 2005, Current opinion in structural biology.

[70]  P. Pinton,et al.  pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. , 2005, Biochemical and biophysical research communications.

[71]  G Zuccheri,et al.  Protein unfolding and refolding under force: methodologies for nanomechanics. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[72]  R. Dalbey,et al.  Oxal/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (Review) , 2005, Molecular membrane biology.

[73]  Irmgard Sinning,et al.  SRP-mediated protein targeting: structure and function revisited. , 2004, Biochimica et biophysica acta.

[74]  N. Pfanner,et al.  Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins , 2004, The EMBO journal.

[75]  A. Kuhn,et al.  YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins , 2004, The Journal of cell biology.

[76]  N. Pfanner,et al.  Mitochondrial import and the twin-pore translocase , 2004, Nature Reviews Molecular Cell Biology.

[77]  T. Becker,et al.  Preprotein recognition by the Toc complex , 2004, The EMBO journal.

[78]  J. Herrmann,et al.  Protein Export across the Inner Membrane of Mitochondria , 2004, Journal of Biological Chemistry.

[79]  Walter Neupert,et al.  Evolutionary conservation of biogenesis of β-barrel membrane proteins , 2003, Nature.

[80]  R. Stuart,et al.  Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C‐terminal region of Oxa1 , 2003, The EMBO journal.

[81]  W. Neupert,et al.  Ribosome binding to the Oxa1 complex facilitates co‐translational protein insertion in mitochondria , 2003, The EMBO journal.

[82]  N. Pfanner,et al.  An Essential Role of Sam50 in the Protein Sorting and Assembly Machinery of the Mitochondrial Outer Membrane* , 2003, Journal of Biological Chemistry.

[83]  A. Valencia,et al.  POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. , 2003, Trends in biochemical sciences.

[84]  B. Schönfisch,et al.  Machinery for protein sorting and assembly in the mitochondrial outer membrane , 2003, Nature.

[85]  J. Tyedmers,et al.  The Sec61p complex is a dynamic precursor activated channel. , 2003, Molecular cell.

[86]  M. Wiedmann,et al.  Polypeptide‐binding proteins mediate completion of co‐translational protein translocation into the mammalian endoplasmic reticulum , 2003, EMBO reports.

[87]  T. Becker,et al.  Prediction of the plant β‐barrel proteome: A case study of the chloroplast outer envelope , 2003, Protein science : a publication of the Protein Society.

[88]  Albert Sickmann,et al.  Protein Insertion into the Mitochondrial Inner Membrane by a Twin-Pore Translocase , 2003, Science.

[89]  C. Koehler,et al.  The role of the Tim8p–Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins , 2002, The Journal of cell biology.

[90]  R. Stuart Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. , 2002, Biochimica et biophysica acta.

[91]  T. Rapoport,et al.  Three-dimensional structure of the bacterial protein-translocation complex SecYEG , 2002, Nature.

[92]  J. Soll,et al.  The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides. , 2002, Biophysical journal.

[93]  W. Neupert,et al.  The protein import motor of mitochondria , 2002, Nature Reviews Molecular Cell Biology.

[94]  Michael Küchler,et al.  The preprotein conducting channel at the inner envelope membrane of plastids , 2002, The EMBO journal.

[95]  W. Neupert,et al.  The Oxa1 Protein Forms a Homooligomeric Complex and Is an Essential Part of the Mitochondrial Export Translocase inNeurospora crassa * , 2002, The Journal of Biological Chemistry.

[96]  A. Matouschek,et al.  Protein unfolding by the mitochondrial membrane potential , 2002, Nature Structural Biology.

[97]  Matthew D. Smith,et al.  In Vivo Analysis of the Role of atTic20 in Protein Import into Chloroplasts , 2002, The Plant Cell Online.

[98]  M. Radermacher,et al.  Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. , 2002, Journal of molecular biology.

[99]  Peter Kovermann,et al.  Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. , 2002, Molecular cell.

[100]  B. Bruce,et al.  The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. , 2001, Biochimica et biophysica acta.

[101]  A. Merlin,et al.  A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23 , 2001, Nature Structural Biology.

[102]  R. Jensen,et al.  Opening the door to mitochondrial protein import , 2001, Nature Structural Biology.

[103]  Wolfgang Voos,et al.  Mitochondrial Import Driving Forces: Enhanced Trapping by Matrix Hsp70 Stimulates Translocation and Reduces the Membrane Potential Dependence of Loosely Folded Preproteins , 2001, Molecular and Cellular Biology.

[104]  V. Daggett,et al.  Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. , 2001, Biophysical journal.

[105]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[106]  M. Ryan,et al.  Translocation of Proteins into Mitochondria , 2001, IUBMB life.

[107]  N. Pfanner,et al.  Versatility of the mitochondrial protein import machinery , 2001, Nature Reviews Molecular Cell Biology.

[108]  N. Pfanner,et al.  Protein Import Channel of the Outer Mitochondrial Membrane: a Highly Stable Tom40-Tom22 Core Structure Differentially Interacts with Preproteins, Small Tom Proteins, and Import Receptors , 2001, Molecular and Cellular Biology.

[109]  W. Neupert,et al.  Oxa1p acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA , 2001, The EMBO journal.

[110]  B. Bruce,et al.  Chloroplast transit peptides: structure, function and evolution. , 2000, Trends in cell biology.

[111]  E. Schleiff,et al.  Topology Studies of the Chloroplast Protein Import Channel Toc75 , 2000, Biological chemistry.

[112]  M. Czisch,et al.  Structure, dynamics, and insertion of a chloroplast targeting peptide in mixed micelles. , 2000, Biochemistry.

[113]  N. Pfanner Protein sorting: Recognizing mitochondrial presequences , 2000, Current Biology.

[114]  T. Cavalier-smith,et al.  Membrane heredity and early chloroplast evolution. , 2000, Trends in plant science.

[115]  D. Kohda,et al.  Structural Basis of Presequence Recognition by the Mitochondrial Protein Import Receptor Tom20 , 2000, Cell.

[116]  G. von Heijne,et al.  YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase , 2000, The EMBO journal.

[117]  A. Matouschek,et al.  Mitochondria unfold precursor proteins by unraveling them from their N-termini , 1999, Nature Structural Biology.

[118]  P. Gans,et al.  A coil-helix instead of a helix-coil motif can be induced in a chloroplast transit peptide from Chlamydomonas reinhardtii. , 1999, European journal of biochemistry.

[119]  J. Froehlich,et al.  GTP promotes the formation of early-import intermediates but is not required during the translocation step of protein import into chloroplasts. , 1999, Plant physiology.

[120]  K. Keegstra,et al.  The endosymbiotic origin of the protein import machinery of chloroplastic envelope membranes. , 1999, Trends in plant science.

[121]  T. Rapoport,et al.  BiP Acts as a Molecular Ratchet during Posttranslational Transport of Prepro-α Factor across the ER Membrane , 1999, Cell.

[122]  Wolfgang Voos,et al.  The Protein Import Motor of Mitochondria Unfolding and Trapping of Preproteins Are Distinct and Separable Functions of Matrix Hsp70 , 1999, Cell.

[123]  J. Soll,et al.  The preprotein translocase of the mitochondrial inner membrane: function and evolution. , 1999, Journal of molecular biology.

[124]  W. Neupert,et al.  Tim9, a new component of the TIM22·54 translocase in mitochondria , 1999, The EMBO journal.

[125]  A. Schulz,et al.  Origin of a chloroplast protein importer. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[126]  N. Pfanner,et al.  Preprotein Translocase of the Outer Mitochondrial Membrane: Molecular Dissection and Assembly of the General Import Pore Complex , 1998, Molecular and Cellular Biology.

[127]  K. Dietmeier,et al.  Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins , 1998, Nature.

[128]  W. Neupert,et al.  Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[130]  I. Collinson,et al.  The protein translocation apparatus of chloroplast envelopes , 1998 .

[131]  C. Koehler,et al.  Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. , 1998, Science.

[132]  Mitochondrial import , 1998, Science.

[133]  A. Kouranov,et al.  Analysis of the Interactions of Preproteins with the Import Machinery over the Course of Protein Import into Chloroplasts , 1997, The Journal of cell biology.

[134]  Maithreyan Srinivasan,et al.  The Tim54p–Tim22p Complex Mediates Insertion of Proteins into the Mitochondrial Inner Membrane , 1997, The Journal of cell biology.

[135]  R. Wagner,et al.  Reconstitution of a chloroplast protein import channel , 1997, The EMBO journal.

[136]  K. Dietmeier,et al.  Differential Recognition of Preproteins by the Purified Cytosolic Domains of the Mitochondrial Import Receptors Tom20, Tom22, and Tom70* , 1997, The Journal of Biological Chemistry.

[137]  T. Fox,et al.  Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. , 1997, Molecular biology of the cell.

[138]  G. Schatz Just follow the acid chain , 1997, Nature.

[139]  A. Johnson,et al.  The Aqueous Pore through the Translocon Has a Diameter of 40–60 Å during Cotranslational Protein Translocation at the ER Membrane , 1997, Cell.

[140]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[141]  M. Bauer,et al.  Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22 , 1996, Nature.

[142]  B. Wilkinson,et al.  Determination of the Transmembrane Topology of Yeast Sec61p, an Essential Component of the Endoplasmic Reticulum Translocation Complex* , 1996, The Journal of Biological Chemistry.

[143]  M. Bauer,et al.  Role of Tim23 as Voltage Sensor and Presequence Receptor in Protein Import into Mitochondria , 1996, Cell.

[144]  G. Blobel,et al.  Interaction of the protein import and folding machineries of the chloroplast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[145]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[146]  W. Neupert,et al.  The role of Hsp70 in conferring unidirectionality on protein translocation into mitochondria. , 1994, Science.

[147]  G. Blobel,et al.  Isolation of components of the chloroplast protein import machinery. , 1994, Science.

[148]  G. Reinhart,et al.  Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore , 1994, Cell.

[149]  S. E. Perry,et al.  Envelope membrane proteins that interact with chloroplastic precursor proteins. , 1994, The Plant Cell.

[150]  R. Hallberg,et al.  Cytochromes c 1 and b 2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism , 1992, Cell.

[151]  G. Blobel,et al.  A protein-conducting channel in the endoplasmic reticulum , 1991, Cell.

[152]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[153]  K. Keegstra,et al.  Internal ATP is the only energy requirement for the translocation of precursor proteins across chloroplastic membranes. , 1989, The Journal of biological chemistry.

[154]  G. von Heijne,et al.  Domain structure of mitochondrial and chloroplast targeting peptides. , 1989, European journal of biochemistry.

[155]  G. Blobel,et al.  Protein import into chloroplasts requires a chloroplast ATPase. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[156]  D. S. Allison,et al.  Artificial mitochondrial presequences. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[157]  G. Heijne Mitochondrial targeting sequences may form amphiphilic helices. , 1986 .

[158]  B. Dobberstein,et al.  Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma , 1975, The Journal of cell biology.

[159]  H. Kowarzyk Structure and Function. , 1910, Nature.

[160]  T. Lithgow,et al.  The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. , 2008, Molecular biology of the cell.

[161]  R. Jensen,et al.  Quaternary structure of the mitochondrial TIM23 complex reveals dynamic association between Tim23p and other subunits. , 2008, Molecular biology of the cell.

[162]  Yang Zhang,et al.  Template‐based modeling and free modeling by I‐TASSER in CASP7 , 2007, Proteins.

[163]  W. Neupert,et al.  Biogenesis of beta-barrel membrane proteins of mitochondria. , 2005, Trends in biochemical sciences.

[164]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[165]  Walter Neupert,et al.  Evolutionary conservation of biogenesis of beta-barrel membrane proteins. , 2003, Nature.

[166]  O. Krasilnikov Sizing Channels with Neutral Polymers , 2002 .

[167]  D. Deamer,et al.  Structure and dynamics of confined polymers , 2002 .

[168]  W. Wimley,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[169]  T A Rapoport,et al.  Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. , 1996, Annual review of biochemistry.

[170]  N. Pfanner,et al.  The Mitochondrial Protein Import Machinery ROLE OF ATP IN DISSOCIATION OF THE Hsp70zMim44 COMPLEX* , 1995 .

[171]  K. Keegstra,et al.  Chloroplastic Precursors and their Transport Across the Envelope Membranes , 1989 .

[172]  G. von Heijne Mitochondrial targeting sequences may form amphiphilic helices. , 1986, The EMBO journal.

[173]  C. Chuong,et al.  Article type Software , 2007 .