Analyzing Streams of Pseudorandom Numbers for Parallel Monte Carlo Integration

The quality of parallel substreams of pseudorandom numbers obtained from linear congruential generators as it is measured by the spectral test depends in a very sensitive and irregular way on the step size which is used. On the other hand, discrepancy estimates show that explicit inversive congruential pseudorandom number generators behave stable with respect to subsequences. The results of a sample Monte Carlo integration show the impact of these diierent theoretical ndings on the reliability of the integration results.

[1]  A. Matteis,et al.  Parallelization of random number generators and long-range correlations , 1988 .

[2]  A. De Matteis,et al.  Controlling Correlations in Parallel Monte Carlo , 1995, Parallel Comput..

[3]  Srinivas Aluru,et al.  A random number generator for parallel computers , 1992, Parallel Comput..

[4]  William F. Eddy Random number generators for parallel processors , 1990 .

[5]  Jack J. Dongarra,et al.  The PVM Concurrent Computing System: Evolution, Experiences, and Trends , 1994, Parallel Comput..

[6]  A. De Matteis,et al.  Long-range correlation analysis of the Wichmann-Hill random number generator , 1993 .

[7]  Stefan Wegenkittl,et al.  Inversive and linear congruential pseudorandom number generators in empirical tests , 1997, TOMC.

[8]  P. Hellekalek,et al.  Inversive pseudorandom number generators: concepts, results and links , 1995, Winter Simulation Conference Proceedings, 1995..

[9]  J. Eichenauer-Herrmann Statistical independence of a new class of inversive congruential pseudorandom numbers , 1993 .

[10]  Karl Entacher,et al.  Bad subsequences of well-known linear congruential pseudorandom number generators , 1998, TOMC.

[11]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..

[12]  A. De Matteis,et al.  Critical distances in pseudorandom sequences generated with composite moduli , 1992, Int. J. Comput. Math..

[13]  A. De Matteis,et al.  A class of parallel random number generators , 1990, Parallel Comput..

[14]  Chang-ming Ma Implementation of a Monte Carlo Code on a Parallel Computer System , 1994, Parallel Comput..

[15]  A. De Matteis,et al.  Long-range correlations in linear and nonlinear random number generators , 1990, Parallel Comput..

[16]  Jun Makino,et al.  Lagged-Fibonacci Random Number Generators on Parallel Computers , 1994, Parallel Comput..

[17]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[18]  Jian Chen,et al.  Implementation of a Distributed Pseudorandom Number Generator , 1995 .

[19]  Michael Mascagni,et al.  Implementation of a portable and reproducible parallel pseudorandom number generator , 1994, Proceedings of Supercomputing '94.

[20]  Michael Mascagni,et al.  Parallel Pseudorandom Number Generation Using Additive Lagged-Fibonacci Recursions , 1995 .

[21]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[22]  N. M. Maclaren,et al.  The Generation of Multiple Independent Sequences of Pseudorandom Numbers , 1989 .

[23]  István Deák,et al.  Uniform random number generators for parallel computers , 1990, Parallel Comput..

[24]  G. S. Fishman Multiplicative congruential random number generators with modulus 2^{}: an exhaustive analysis for =32 and a partial analysis for =48 , 1990 .

[25]  Jun Makino,et al.  Parallelized Feedback Shift Register Generators of Pseudorandom Numbers , 1995, Parallel Comput..

[26]  Reinhard von Hanxleden,et al.  Correctness and determinism of Parallel Monte Carlo Processes , 1992, Parallel Comput..