Mixed Finite Elements Methods for Convection-Diffusion Problems

Mixed finite elements are proposed and analysed for the n-dimensional problem with div Φ = 0 in Ω. we will study with particular attention the methods well adapted to the convection-dominated flows.

[1]  T. Belytschko,et al.  A generalized Galerkin method for steady convection-diffusion problems with application to quadratic shape function elements , 1985 .

[2]  Thomas J. R. Hughes,et al.  A Petrov-Galerkin finite element method for convection-dominated flows: An accurate upwinding technique for satisfying the maximum principle☆ , 1985 .

[3]  M. Cross,et al.  A critical evaluation of seven discretization schemes for convection–diffusion equations , 1985 .

[4]  R. S. Falk,et al.  Error estimates for mixed methods , 1980 .

[5]  Michael A. Leschziner,et al.  Discretization of nonlinear convection processes: A broad-range comparison of four schemes , 1985 .

[6]  Jérôme Jaffré,et al.  Simulation of Two-Dimensional Waterflooding By Using Mixed Finite Elements , 1984 .

[7]  J. Jaffré Decentrage et elements finis mixtes pour les equations de diffusion-convection , 1984 .

[8]  Uno Nävert,et al.  An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .

[9]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[10]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[11]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[12]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[13]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .