A nodal domain theorem and a higher-order Cheeger inequality for the graph $p$-Laplacian

We consider the nonlinear graph $p$-Laplacian and its set of eigenvalues and associated eigenfunctions of this operator defined by a variational principle. We prove a nodal domain theorem for the graph $p$-Laplacian for any $p\geq 1$. While for $p>1$ the bounds on the number of weak and strong nodal domains are the same as for the linear graph Laplacian ($p=2$), the behavior changes for $p=1$. We show that the bounds are tight for $p\geq 1$ as the bounds are attained by the eigenfunctions of the graph $p$-Laplacian on two graphs. Finally, using the properties of the nodal domains, we prove a higher-order Cheeger inequality for the graph $p$-Laplacian for $p>1$. If the eigenfunction associated to the $k$-th variational eigenvalue of the graph $p$-Laplacian has exactly $k$ strong nodal domains, then the higher order Cheeger inequality becomes tight as $p\rightarrow 1$.

[1]  Michelle Becker Solvability And Bifurcations Of Nonlinear Equations , 2016 .

[2]  Matthias Hein,et al.  Spectral clustering based on the graph p-Laplacian , 2009, ICML '09.

[3]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[4]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[5]  Ram Band,et al.  Isospectral graphs with identical nodal counts , 2011, 1110.0158.

[6]  D. L. Powers Graph Partitioning by Eigenvectors , 1988 .

[7]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[8]  Josef Leydold,et al.  LARGEST EIGENVALUES OF THE DISCRETE P-LAPLACIAN OF TREES WITH DEGREE SEQUENCES ∗ , 2009 .

[9]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[10]  L. Miclo On eigenfunctions of Markov processes on trees , 2008 .

[11]  Bojan Mohar,et al.  Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.

[12]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[13]  Pavel Rehak,et al.  Oscillatory Properties of Second Order Half-Linear Difference Equations , 2001 .

[14]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[15]  E. M. Elsayed,et al.  DIFFERENCE EQUATIONS , 2001 .

[16]  Marco Caroccia,et al.  The optimal partition problem for $p$-Laplacian eigenvalues as $p$ goes to one , 2015 .

[17]  J. Leydold,et al.  Discrete Nodal Domain Theorems , 2000, math/0009120.

[18]  Saïd Amghibech Bounds for the largest p-Laplacian eigenvalue for graphs , 2006, Discret. Math..

[19]  Dario Fasino,et al.  An Algebraic Analysis of the Graph Modularity , 2013, SIAM J. Matrix Anal. Appl..

[20]  Luca Trevisan,et al.  Improved Cheeger's inequality: analysis of spectral partitioning algorithms through higher order spectral gap , 2013, STOC '13.

[21]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[22]  Shing-Tung Yau,et al.  Nodal domain and eigenvalue multiplicity of graphs , 2012 .

[23]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[24]  Dario Fasino,et al.  Generalized modularity matrices , 2015, ArXiv.

[25]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[26]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[27]  Uzy Smilansky,et al.  Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.

[28]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[29]  Delio Mugnolo,et al.  General Cheeger inequalities for p-Laplacians on graphs , 2015, 1509.06062.

[30]  Peter Lindqvist,et al.  Some remarkable sine and cosine functions , 1995 .

[31]  Á. Elbert,et al.  A half-linear second order differential equation , 1979 .

[32]  Saïd Amghibech,et al.  Eigenvalues of the Discrete p-Laplacian for Graphs , 2003, Ars Comb..

[33]  Mitsuharu Otani,et al.  A Remark on Certain Nonlinear Elliptic Equations : Dedicated to the memory of Professor M. Fukawa , 1984 .

[34]  F. Chung,et al.  Upper Bounds for Eigenvalues of the Discrete and Continuous Laplace Operators , 1996 .

[35]  K. C. Chang,et al.  Spectrum of the 1‐Laplacian and Cheeger's Constant on Graphs , 2014, J. Graph Theory.

[36]  Uzy Smilansky,et al.  Nodal domains on graphs - How to count them and why? , 2007, 0711.3416.

[37]  Kung-Ching Chang,et al.  Variational methods for non-differentiable functionals and their applications to partial differential equations , 1981 .

[38]  Pavel Drábek,et al.  On the Generalization of the Courant Nodal Domain Theorem , 2002 .

[39]  Matthias Hein,et al.  An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA , 2010, NIPS.

[40]  Gregory Berkolaiko,et al.  A Lower Bound for Nodal Count on Discrete and Metric Graphs , 2006, math-ph/0611026.

[41]  Victor Reiner,et al.  Perron–Frobenius type results and discrete versions of nodal domain theorems , 1999 .

[42]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[43]  Ramin Javadi,et al.  On the isoperimetric spectrum of graphs and its approximations , 2008, J. Comb. Theory, Ser. B.

[44]  P. Flajolet On approximate counting , 1982 .

[45]  Ondřej Došlý,et al.  Half-linear differential equations , 2005 .

[46]  Wenbo Zhao,et al.  PageRank and Random Walks on Graphs , 2010 .

[47]  Matteo Novaga,et al.  The p-Laplace eigenvalue problem as p goes to 1 and Cheeger sets in a Finsler metric , 2008 .

[48]  Uzy Smilansky,et al.  Can one count the shape of a drum? , 2006, Physical review letters.

[49]  Ramin Javadi,et al.  On nodal domains and higher-order Cheeger inequalities of finite reversible Markov processes , 2012 .

[50]  Mu-Fa Chen,et al.  Mixed eigenvalues of discrete p-Laplacian , 2014 .

[51]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..