An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations

Abstract We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bezier extraction to accelerate the computation of NURBS and B-spline terms and employ H -matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.

[1]  Mario Bebendorf,et al.  Wideband nested cross approximation for Helmholtz problems , 2015, Numerische Mathematik.

[2]  Κωνσταντίνος Κώστας,et al.  Ship-hull shape optimization with a T-spline based BEM-isogeometric solver , 2015 .

[3]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[4]  Ronald Kriemann,et al.  Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.

[5]  Annalisa Buffa,et al.  Isogeometric Analysis for Electromagnetic Problems , 2010, IEEE Transactions on Magnetics.

[6]  Yiying Tong,et al.  Subdivision based isogeometric analysis technique for electric field integral equations for simply connected structures , 2015, J. Comput. Phys..

[7]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[8]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[9]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[10]  Roger F. Harrington,et al.  The Method of Moments in Electromagnetics , 1987 .

[11]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[12]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[13]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[14]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[15]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[16]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[17]  James E. Cobb Tiling the sphere with rational bezier patches , 1994 .

[18]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[19]  Olaf Steinbach,et al.  Boundary element based multiresolution shape optimisation in electrostatics , 2015, J. Comput. Phys..

[20]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[21]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[22]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[23]  Walton C. Gibson,et al.  The Method of Moments in Electromagnetics , 2007 .

[24]  Ozgur Ergul,et al.  Improving the accuracy of the magnetic field integral equation with the linear‐linear basis functions , 2006 .

[25]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[26]  Bert Jüttler,et al.  Low rank tensor methods in Galerkin-based isogeometric analysis , 2017 .

[27]  Stuart C. Hawkins,et al.  A spectrally accurate algorithm for electromagnetic scattering in three dimensions , 2006, Numerical Algorithms.

[28]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[29]  Andrew F. Peterson Mapped Vector Basis Functions for Electromagnetic Integral Equations , 2006, Mapped Vector Basis Functions for Electromagnetic Integral Equations.

[30]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[31]  A. C. Woo,et al.  Benchmark radar targets for the validation of computational electromagnetics programs , 1993 .

[32]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[33]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[34]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[35]  Giancarlo Sangalli,et al.  Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..

[36]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[37]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[38]  Wenping Wang,et al.  Feature-preserving T-mesh construction using skeleton-based polycubes , 2015, Comput. Aided Des..

[39]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .