Chopper Capacitively Coupled Instrumentation Amplifier Capable of Handling Large Electrode Offset for Biopotential Recordings

This brief presents the design of a low-noise chopper capacitively coupled instrumentation amplifier (CCIA). To accommodate the input with large electrode offset (EOS), the amplifier includes a coarse digital dc-servo loop (DSL) in addition to a fine analog DSL that strikes a balance among noise, EOS handling range and circuit complexity. The chip is fabricated in a standard 0.13-<inline-formula> <tex-math notation="LaTeX">$ {\mu }\text{m}$ </tex-math></inline-formula> CMOS process. The supply voltage is 1.2 V and the quiescent current is 2.9 <inline-formula> <tex-math notation="LaTeX">$ {\mu }\text{A}$ </tex-math></inline-formula>. Measurement result shows that the chopper CCIA achieves a noise spectrum of 47 nV/<inline-formula> <tex-math notation="LaTeX">$\sqrt {{\text {H}}z}$ </tex-math></inline-formula> and is capable of handling EOS of ±50 mV.

[1]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.

[2]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[3]  Chi-Ying Tsui,et al.  A low-power chopper bandpass amplifier for biopotential sensors , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[4]  Refet Firat Yazicioglu,et al.  A 200 $\mu$ W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems , 2008, IEEE Journal of Solid-State Circuits.

[5]  W.M.C. Sansen,et al.  A micropower low-noise monolithic instrumentation amplifier for medical purposes , 1987 .

[6]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.

[7]  W. Li Teraohm on-chip resistance realisation using switched capacitor topologies , 2012 .

[8]  Hariprasad Chandrakumar,et al.  A High Dynamic-Range Neural Recording Chopper Amplifier for Simultaneous Neural Recording and Stimulation , 2017, IEEE Journal of Solid-State Circuits.

[9]  Man-Kay Law,et al.  A 2- $\mu\text{W}$ 45-nV/√Hz Readout Front End With Multiple-Chopping Active-High-Pass Ripple Reduction Loop and Pseudofeedback DC Servo Loop , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[11]  Refet Firat Yazicioglu,et al.  Measurement and Analysis of Current Noise in Chopper Amplifiers , 2013, IEEE Journal of Solid-State Circuits.

[12]  John G. Webster,et al.  Reductionl of Interference Due to Common Mode Voltage in Biopotential Amplifiers , 1983, IEEE Transactions on Biomedical Engineering.

[13]  Reid R. Harrison,et al.  A low-power, low-noise CMOS amplifier for neural recording applications , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[14]  Roman Genov,et al.  Low-Frequency Noise and Offset Rejection in DC-Coupled Neural Amplifiers: A Review and Digitally-Assisted Design Tutorial , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[15]  Mansun Chan,et al.  32.9 nV/rt Hz ${-}$60.6 dB THD Dual-Band Micro-Electrode Array Signal Acquisition IC , 2012, IEEE Journal of Solid-State Circuits.