Vertical-Cavity Surface-Emitting Laser: Its Conception and Evolution

The vertical-cavity surface-emitting laser (VCSEL) is becoming a key device in high-speed optical local-area networks (LANs) and even wide-area networks (WANs). This device is also enabling ultraparallel data transfer in equipment and computer systems. In this paper, we will review its physics and the progress of technology covering the spectral band from the infrared to the ultraviolet, by featuring materials, fabrication technology, and performances such as threshold, output power, polarization, modulation and reliability. Lastly, we will touch on its future prospects.

[1]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[2]  Kenichi Iga,et al.  Surface-emitting GaInAsP/InP injection laser with short cavity length , 1982 .

[3]  F. Koyama,et al.  Microcavity GalaAs/GaAs surface-emitting laser with Ith = 6 mA , 1987 .

[4]  Kenichi Iga,et al.  Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector , 1988 .

[5]  Kenichi Iga,et al.  Surface emitting semiconductor lasers , 1988 .

[6]  F. Koyama,et al.  Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser , 1989 .

[7]  Axel Scherer,et al.  Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators , 1989 .

[8]  Chung-En Zah,et al.  Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers , 1991 .

[9]  B. Tell,et al.  Deep-red continuous wave top-surface-emitting vertical-cavity AlGaAs superlattice lasers , 1991, IEEE Photonics Technology Letters.

[10]  Hiroyuki Yokoyama,et al.  Record Low Threshold Current in Microcavity Surface-Emitting Laser , 1993 .

[11]  Kenichi Iga,et al.  Near room temperature continuous wave lasing characteristics of GaInAsP/InP surface emitting laser , 1993 .

[12]  Diana L. Huffaker,et al.  Low threshold half-wave vertical-cavity lasers , 1994 .

[13]  Isamu Akasaki,et al.  Room‐temperature violet stimulated emission from optically pumped AlGaN/GaInN double heterostructure , 1994 .

[14]  Q. Deng,et al.  Very-low-threshold index-confined planar microcavity lasers , 1995, IEEE Photonics Technology Letters.

[15]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation , 1995 .

[16]  Kenichi Iga,et al.  Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure , 1995 .

[17]  Kent D. Choquette,et al.  Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency , 1995 .

[18]  K. Streubel,et al.  Submilliamp long wavelength vertical cavity lasers , 1996, Conference Digest. 15th IEEE International Semiconductor Laser Conference.

[19]  Mary K. Hibbs-Brenner,et al.  Reliability of proton-implanted VCSELs for data communications , 1996, Photonics West.

[20]  Yong-Hee Lee,et al.  780 nm oxidised vertical-cavity surface-emitting lasers with Al/sub 0.11/Ga/sub 0.89/As quantum wells , 1996 .

[21]  Margaret Lorenzo Eight International Conference on Induim Phosphide & Related Materials Schwäbisch-Gmünd, Germany , 1996 .

[22]  R. Michalzik,et al.  57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs , 1997 .

[23]  F. Koyama,et al.  A novel GaInNAs-GaAs quantum-well structure for long-wavelength semiconductor lasers , 1997, IEEE Photonics Technology Letters.

[24]  Kenichi Iga,et al.  P-type AlAs Growth on a GaAs (311)B Substrate Using Carbon Auto-Doping for Low Resistance GaAs/AlAs Distributed Bragg Reflectors. , 1997 .

[25]  Kenichi Iga,et al.  Lasing characteristics of GaAs(311)A substrate based InGaAs-GaAs vertical-cavity surface-emitting lasers , 1997 .

[26]  Kenichi Iga,et al.  Modeling of oxide-confined vertical-cavity surface-emitting lasers , 1997 .

[27]  Yoshitaka Ohiso,et al.  Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition , 1997 .

[28]  Diana L. Huffaker,et al.  Quantum dot vertical-cavity surface-emitting laser with a dielectric aperture , 1997 .

[29]  Kenichi Iga,et al.  Interface control of GaN/AlGaN quantum well structures in MOVPE growth , 1998 .

[30]  N. Hatori,et al.  A low-threshold polarization-controlled vertical-cavity surface-emitting laser grown on GaAs (311)B substrate , 1998, IEEE Photonics Technology Letters.

[31]  Masahiko Sano,et al.  High-Power, Long-Lifetime InGaN/GaN/AlGaN-Based Laser Diodes Grown on Pure GaN Substrates , 1998 .

[32]  T. Sakaguchi,et al.  An over 10-Gb/s transmission experiment using a p-type delta-doped InGaAs-GaAs quantum-well vertical-cavity surface-emitting laser , 1998, IEEE Photonics Technology Letters.

[33]  Ted D. Lowes,et al.  Uniform threshold current, continuous-wave, singlemode 1300 nm vertical cavity lasers from 0 to 70°C , 1998 .

[34]  K. Uomi,et al.  1.3-μm continuous-wave lasing operation in GaInNAs quantum-well lasers , 1998, IEEE Photonics Technology Letters.

[35]  L. Coldren,et al.  Room-temperature, electrically-pumped, multiple-active-region VCSELs with high differential efficiency at 1.55 /spl mu/m , 1999, Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464).

[36]  Kenichi Iga,et al.  High Temperature Characteristics of Nearly 1.2 µm GaInAs/GaAs/AlGaAs Lasers , 1999 .

[37]  Kenichi Iga,et al.  Lasing characteristics of InGaAs-GaAs polarization controlled vertical-cavity surface-emitting laser grown on GaAs [311] B substrate , 1999 .

[38]  F. Koyama,et al.  1.17-μm highly strained GaInAs-GaAs quantum-well laser , 1999, IEEE Photonics Technology Letters.

[39]  Kenichi Iga,et al.  Record high characteristic temperature (To = 122 K) of 1.55 [micro sign]m strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier , 1999 .

[40]  F. Koyama,et al.  Self-aligned current confinement structure using AlAs/InP tunnel junction in GaInAsP/InP semiconductor lasers , 1999 .

[41]  Larry A. Coldren,et al.  Electrically-pumped, single-epitaxial VCSELs at 1.55 /spl mu/m with Sb-based mirrors , 1999 .

[42]  Kenichi Iga,et al.  1.2 µm highly strained GaInAs/GaAs quantum well lasers for singlemode fibre datalink , 1999 .

[43]  Kaori Kurihara,et al.  Room temperature low-threshold CW operation of 1.23 [micro sign]m GaAsSb VCSELs on GaAs substrates , 2000 .

[44]  F. Koyama,et al.  High-temperature operation up to 170/spl deg/C of GaInNAs-GaAs quantum-well lasers grown by chemical beam epitaxy , 2000, IEEE Photonics Technology Letters.

[45]  F. Koyama,et al.  Data transmission over single-mode fiber by using 1.2-μm uncooled GaInAs-GaAs laser for Gb/s local area network , 2000, IEEE Photonics Technology Letters.

[46]  K. Iga,et al.  Surface-emitting laser-its birth and generation of new optoelectronics field , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  Kenichi Iga,et al.  Continuous wave operation of 1.26 [micro sign]m GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition , 2000 .

[48]  F. Koyama,et al.  Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW , 2001, Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.01TH8557).

[49]  Yu Peng,et al.  Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN∕GaN and Ta2O5∕SiO2 distributed Bragg reflector , 2005 .

[50]  Vertical Cavity Surface Emitting Lasers Photonics , 2006 .