Variational Autoencoder Based Unsupervised Domain Adaptation For Semantic Segmentation

Unsupervised domain adaptation, which transfers supervised knowledge from a labeled domain to an unlabeled domain, remains a tough problem in the field of computer vision, especially for semantic segmentation. Some methods inspired by adversarial learning and semi-supervised learning have been developed for unsupervised domain adaptation in semantic segmentation and achieved outstanding performances. In this paper, we propose a novel method for this task. Like adversarial learning-based methods using a discriminator to align the feature distributions from different domains, we employ a variational autoencoder to get to the same destination but in a non-adversarial manner. Since the two approaches are compatible, we also integrate an adversarial loss into our method. By further introducing pseudo labels, our method can achieve state-of-the-art performances on two benchmark adaptation scenarios, GTA5-toCITYSCAPES and SYNTHIA-to-CITYSCAPES.

[1]  Yi Yang,et al.  Taking a Closer Look at Domain Shift: Category-Level Adversaries for Semantics Consistent Domain Adaptation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Ole Winther,et al.  Ladder Variational Autoencoders , 2016, NIPS.

[3]  Yi-Hsuan Tsai,et al.  Domain Adaptation for Structured Output via Discriminative Patch Representations , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Patrick Pérez,et al.  ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Dong Liu,et al.  Fully Convolutional Adaptation Networks for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Jingang Tan,et al.  SSF-DAN: Separated Semantic Feature Based Domain Adaptation Network for Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Yang Zou,et al.  Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training , 2018, ArXiv.

[9]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Nuno Vasconcelos,et al.  Bidirectional Learning for Domain Adaptation of Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Vladlen Koltun,et al.  Playing for Data: Ground Truth from Computer Games , 2016, ECCV.

[12]  Taesung Park,et al.  CyCADA: Cycle-Consistent Adversarial Domain Adaptation , 2017, ICML.

[13]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[14]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Ming-Hsuan Yang,et al.  Learning to Adapt Structured Output Space for Semantic Segmentation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[16]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[17]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[18]  Wei-Lun Chang,et al.  All About Structure: Adapting Structural Information Across Domains for Boosting Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Ming-Hsuan Yang,et al.  CrDoCo: Pixel-Level Domain Transfer With Cross-Domain Consistency , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Fengmao Lv,et al.  Constructing Self-Motivated Pyramid Curriculums for Cross-Domain Semantic Segmentation: A Non-Adversarial Approach , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[22]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[23]  Changick Kim,et al.  Self-Ensembling With GAN-Based Data Augmentation for Domain Adaptation in Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[24]  Zhiting Hu,et al.  Improved Variational Autoencoders for Text Modeling using Dilated Convolutions , 2017, ICML.

[25]  Deng Cai,et al.  Domain Adaptation for Semantic Segmentation With Maximum Squares Loss , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[26]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.