Security of practical phase-coding quantum key distribution

Security proof of practical quantum key distribution (QKD) has attracted a lot of atten-tions in recent years. Most of real-life QKD implementations are based on phase-codingBB84 protocol, which usually use Unbalanced Mach-Zehnder Interferometer (UMZI) asthe information encoder and decoder. However, the long arm and short arm of UMZIwill introduce different loss in practical experimental realizations, the state emitted byAlice's side is nolonger perfect BB84 states correspondingly. In this paper, we will givethe security analysis in this situation. Counterintuitively, active compensation for thisdifferent loss will only lower the secret key bit rate.

[1]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[2]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[3]  Zheng-Fu Han,et al.  Decoy states for quantum key distribution based on decoherence-free subspaces , 2008 .

[4]  Zheng-Fu Han,et al.  Decoy state quantum key distribution with modified coherent state , 2007, 0704.3833.

[5]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[6]  H. Lo,et al.  Practical Decoy State for Quantum Key Distribution , 2005, quant-ph/0503005.

[7]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[8]  Jian-Wei Pan,et al.  General theory of decoy-state quantum cryptography with source errors , 2006, quant-ph/0612121.

[9]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[10]  J. Preskill,et al.  Phase randomization improves the security of quantum key distribution , 2005, quant-ph/0504209.

[11]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[12]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[13]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[14]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[15]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[16]  J.-M. Goethals,et al.  IEEE international symposium on information theory , 1981 .

[17]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  G. Guo,et al.  Faraday-Michelson system for quantum cryptography. , 2005, Optics letters.

[20]  Gisin,et al.  Quantum cryptography with coherent states. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  John Preskill,et al.  Security of quantum key distribution with imperfect devices , 2002, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..