Multilevel preconditioned QMR methods for unstructured mesh computation

We present a variant of the Quasi-Minimal Residual (QMR) algorithm of Freund and Nachtigal with a preconditioner based on the Algebraic Multilevel (AMLI) algorithm of Axelsson and Vassilevski. This combination provides an effective solution method for indefinite algebraic systems and is tested by application to finite element discretizations of the Helmholtz equation. The implementation is applicable with both h- and p-refinements, and easily extends to a parallel environment.

[1]  Olof B. Widlund,et al.  A Polylogarithmic Bound for an Iterative Substructuring Method for Spectral Elements in Three Dimensions , 1996 .

[2]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[3]  Weiming Cao,et al.  A preconditioner for the $h$- $p$ version of the finite element method in two dimensions , 1996 .

[4]  V. A. Barker,et al.  Finite element solution of boundary value problems , 1984 .

[5]  Mark Ainsworth A Hierarchical Domain Decomposition Preconditioner for h-P Finite Element Approximation on Locally Refined Meshes , 1996, SIAM J. Sci. Comput..

[6]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[7]  Mark Ainsworth,et al.  A Preconditioner Based on Domain Decomposition for H-P Finite-Element Approximation on Quasi-Uniform Meshes , 1996 .

[8]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[11]  H. A. van der Vorst,et al.  Parallel Iterative Solution Methods for Linear Systems arising from Discretized PDE's , 1995 .

[12]  Dimitri J. Mavriplis,et al.  MULTIGRID TECHNIQUES FOR UNSTRUCTURED MESHES , 1995 .

[13]  R. Bank,et al.  An algorithm for coarsening unstructured meshes , 1996 .

[14]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[15]  J. D. Teresco,et al.  Parallel structures and dynamic load balancing for adaptive finite element computation , 1998 .

[16]  T. Hughes,et al.  Finite element methods for the Helmholtz equation in an exterior domain: model problems , 1991 .

[17]  P. Wesseling High Performance Computing in Fluid Dynamics , 1996 .

[18]  Ed Anderson,et al.  LAPACK users' guide - [release 1.0] , 1992 .

[19]  Carlo L. Bottasso,et al.  Parallel automated adaptive procedures for unstructured meshes , 1995 .

[20]  Peter M. Pinsky,et al.  Finite element dispersion analysis for the three‐dimensional second‐order scalar wave equation , 1992 .

[21]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[22]  M. Shephard,et al.  A straightforward structure to construct shape functions for variable p-order meshes , 1997 .

[23]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .