The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering

The developmental principles that establish the columnar edifice of the cerebral cortex underlie its evolution and dictate its physiological operations and cognitive capacity. This article contrasts the initial discoveries made by Ramón y Cajal and his contemporaries, based on the ingenious interpretation of neuronal shapes and their relationships using the Golgi method, with new insights based on the application of the most advanced methods of molecular biology and genetics. We can now propose a realistic model of how the sequence of gene expression, cascade of multiple molecular pathways and cell-cell interactions establish the number of neurons, guide their migration and allocation into proper regions and determine their differentiation into specific phenotypes that establish specific synaptic connections. The findings obtained from different levels of analyses sustain the radial unit hypothesis as a useful framework for understanding the mechanisms of cortical development and its evolution as an organ of thought.

[1]  M. Rao,et al.  Enrichment of Neurons and Neural Precursors from Human Embryonic Stem Cells , 2001, Experimental Neurology.

[2]  J. Lund,et al.  Development of neurons in the visual cortex (area 17) of the monkey (Macaca nemestrina): A Golgi study from fetal day 127 to postnatal maturity , 1977, The Journal of comparative neurology.

[3]  A. Kölliker Entwicklungsgeschichte des Menschen und der höheren Thiere / von Albert Kölliker. , 1879 .

[4]  J. Lund,et al.  Specificity and non-specificity of synaptic connections within mammalian visual cortex , 2002, Journal of neurocytology.

[5]  P. Rakic,et al.  SPARC-like 1 Regulates the Terminal Phase of Radial Glia-Guided Migration in the Cerebral Cortex , 2004, Neuron.

[6]  A. Kriegstein,et al.  Developmental Neurotransmitters? , 2002, Neuron.

[7]  M. Wassef,et al.  Role of thalamic axons in the expression of H-2Z1, a mouse somatosensory cortex specific marker. , 1999, Cerebral cortex.

[8]  Pasko Rakic Neurocreationism--Making New Cortical Maps , 2001, Science.

[9]  P. Goldman-Rakic,et al.  Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. , 1986, Science.

[10]  P. Rakic,et al.  Cell Proliferation Without Neurogenesis in Adult Primate Neocortex , 2001, Science.

[11]  A J Barkovich,et al.  Syndromes of bilateral symmetrical polymicrogyria. , 1999, AJNR. American journal of neuroradiology.

[12]  P. Rakic No More Cortical Neurons for You , 2006, Science.

[13]  Vivaldo Moura-Neto,et al.  Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes. , 2003, Journal of neurobiology.

[14]  A. Kölliker Grundriss der Entwicklungsgeschichte des Menschen und der höheren Thiere : für Studirende und Ärzte , 2022 .

[15]  P. Rakic,et al.  Role of neuron-glial junctional domain proteins in the maintenance and termination of neuronal migration across the embryonic cerebral wall , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  D. O'Leary,et al.  Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. , 2000, Science.

[17]  P. Rakic,et al.  Molecular and Morphological Heterogeneity of Neural Precursors in the Mouse Neocortical Proliferative Zones , 2006, The Journal of Neuroscience.

[18]  P. Rakic,et al.  Modulation of neuronal migration by NMDA receptors. , 1993, Science.

[19]  M. Götz,et al.  The cell biology of neurogenesis , 2006, International Journal of Developmental Neuroscience.

[20]  A. Kriegstein,et al.  The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. , 2006, Cerebral cortex.

[21]  Nobuaki Tamamaki,et al.  Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex , 2001, Neuroscience Research.

[22]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[23]  M. Edwards,et al.  Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. , 1988, Brain research.

[24]  P. Rakić Limits of neurogenesis in primates. , 1985, Science.

[25]  E. Grove,et al.  Generating the cerebral cortical area map. , 2003, Annual review of neuroscience.

[26]  P. Rakic,et al.  Radial and horizontal deployment of clonally related cells in the primate neocortex: Relationship to distinct mitotic lineages , 1995, Neuron.

[27]  Pasko Rakic,et al.  A golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes , 1979, Anatomy and Embryology.

[28]  P. Rakic,et al.  Four-Dimensional Migratory Coordinates of GABAergic Interneurons in the Developing Mouse Cortex , 2003, The Journal of Neuroscience.

[29]  R L Sidman,et al.  SUPRAVITAL DNA SYNTHESIS IN THE DEVELOPING HUMAN AND MOUSE BRAIN , 1968, Journal of neuropathology and experimental neurology.

[30]  P. Rakić,et al.  CLEARANCE RATE OF EXOGENOUS 3H‐THYMIDINE FROM THE PLASMA OF PREGNANT RHESUS MONKEYS , 1974, Cell and tissue kinetics.

[31]  Kristin L. Whitford,et al.  Control of cortical interneuron migration by neurotrophins and PI3-kinase signaling. , 2002, Development.

[32]  P. Rakic,et al.  Neuronal migration and contact guidance in the primate telencephalon. , 1978, Postgraduate medical journal.

[33]  Michel Bornens,et al.  Nucleokinesis in Tangentially Migrating Neurons Comprises Two Alternating Phases: Forward Migration of the Golgi/Centrosome Associated with Centrosome Splitting and Myosin Contraction at the Rear , 2005, The Journal of Neuroscience.

[34]  M. Jacobson,et al.  Embryonic vertebrate central nervous system: Revised terminology , 1970 .

[35]  P. Rakic Mechanism of ocular dominance segregation in the lateral geniculate nucleus: competitive elimination hypothesis , 1986, Trends in Neurosciences.

[36]  P. Rakić,et al.  Neuron‐glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus , 1971, The Journal of comparative neurology.

[37]  P. Levitt,et al.  Cerebral cortical progenitors are fated to produce region-specific neuronal populations. , 1993, Cerebral cortex.

[38]  Sophie Dupuis,et al.  Directional guidance of neuronal migration in the olfactory system by the protein Slit , 1999, Nature.

[39]  J F Fulton,et al.  Physiology of the Nervous System , 1939, Science.

[40]  A L Robinson,et al.  A Rescue for Wisconsin's Synchrotron Source: Three years after its completion, Aladdin glows only feebly; to get more light out requires new NSF money and help from DOE accelerator experts. , 1985, Science.

[41]  B. Reese,et al.  Separate Progenitors for Radial and Tangential Cell Dispersion during Development of the Cerebral Neocortex , 1998, Neuron.

[42]  Webb Haymaker,et al.  Histology and Histopathology of the Nervous System , 1982 .

[43]  P. Rakić,et al.  Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  Y. Yanagawa,et al.  Multimodal tangential migration of neocortical GABAergic neurons independent of GPI-anchored proteins , 2003, Development.

[45]  R. Sidman,et al.  Autoradiographic Study of Cell Migration during Histogenesis of Cerebral Cortex in the Mouse , 1961, Nature.

[46]  C. Walsh,et al.  Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. , 2003, Cerebral cortex.

[47]  P. Rakic A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution , 1995, Trends in Neurosciences.

[48]  L. Swanson Brain Architecture: Understanding the Basic Plan , 2002 .

[49]  P. Rakic,et al.  Distinct Functions of α3 and αV Integrin Receptors in Neuronal Migration and Laminar Organization of the Cerebral Cortex , 1999, Neuron.

[50]  W. His Die Entwickelung des menschlichen Gehirns : während der ersten Monate , 1904 .

[51]  Arnold Kriegstein,et al.  Changing concepts of cortical development. , 2003, Cerebral cortex.

[52]  Pasko Rakic,et al.  Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression , 2001, Current Biology.

[53]  P. Rakic,et al.  MEKK4 Signaling Regulates Filamin Expression and Neuronal Migration , 2006, Neuron.

[54]  Pasko Rakic,et al.  Mitotic spindle rotation and mode of cell division in the developing telencephalon , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[56]  J. Rubenstein,et al.  Patterning of frontal cortex subdivisions by Fgf17 , 2007, Proceedings of the National Academy of Sciences.

[57]  A. Lavdas,et al.  The Medial Ganglionic Eminence Gives Rise to a Population of Early Neurons in the Developing Cerebral Cortex , 1999, The Journal of Neuroscience.

[58]  Y. Arimatsu,et al.  Early regional specification for a molecular neuronal phenotype in the rat neocortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[59]  T. Sawada,et al.  Inhibiting neuronal migration by blocking NMDA receptors in the embryonic rat cerebral cortex: a tissue culture study. , 1999, Brain research. Developmental brain research.

[60]  P. Evrard,et al.  Glial-neuronal relationship in the developing central nervous system. A histochemical-electron microscope study of radial glial cell particulate glycogen in normal and reeler mice and the human fetus. , 1985, Developmental neuroscience.

[61]  T. Weissman,et al.  Neurons derived from radial glial cells establish radial units in neocortex , 2001, Nature.

[62]  P. Rakić Neurons in Rhesus Monkey Visual Cortex: Systematic Relation between Time of Origin and Eventual Disposition , 1974, Science.

[63]  N. Šestan,et al.  Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Pasko Rakic,et al.  Elusive radial glial cells: Historical and evolutionary perspective , 2003, Glia.

[65]  J G Parnavelas,et al.  Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. , 1991, Cerebral cortex.

[66]  A. Kriegstein,et al.  Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases , 2004, Nature Neuroscience.

[67]  B Kirschenbaum,et al.  In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. , 1994, Cerebral cortex.

[68]  D. Hubel,et al.  Anatomical Demonstration of Columns in the Monkey Striate Cortex , 1969, Nature.

[69]  Radial Columnar Patches in the Chimeric Cerebral Cortex Visualized by Use of Mouse Embryonic Stem Cells Expressing β‐Galactosidase , 1991 .

[70]  Pasko Rakic,et al.  Genetic Control of Cortical Convolutions , 2004, Science.

[71]  T Tarui,et al.  Overexpression of p27 Kip 1, probability of cell cycle exit, and laminar destination of neocortical neurons. , 2005, Cerebral cortex.

[72]  S. Anderson,et al.  Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. , 1999, Cerebral cortex.

[73]  G. Fishell,et al.  Astrotactin provides a receptor system for CNS neuronal migration. , 1991, Development.

[74]  P. Rakic Neuronal-glial interaction during brain development , 1981, Trends in Neurosciences.

[75]  S. Mcconnell,et al.  Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  P. Rakić,et al.  Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  C. Sotelo,et al.  Molecular heterogeneity of progenitors and radial migration in the developing cerebral cortex revealed by transgene expression. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[78]  G. Corfas,et al.  Neuregulin and erbB Receptors Play a Critical Role in Neuronal Migration , 1997, Neuron.

[79]  G. Fishell,et al.  In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. , 2001, Development.

[80]  D. Steindler,et al.  Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Edward P. Sayre,et al.  Computer-aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscopic montages of foetal monkey brain , 1974, Nature.

[82]  P. Rakic Neuroscience. No more cortical neurons for you. , 2006, Science.

[83]  J. Sanes,et al.  Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a Recombinant Retrovirus , 1988, Neuron.

[84]  M. Hatten,et al.  Mechanisms of glial-guided neuronal migration in vitro and in vivo , 1990, Experientia.

[85]  P S Goldman-Rakic,et al.  Columnar organization of corticocortical projections in squirrel and rhesus monkeys: Similarity of column width in species differing in cortical volume , 1983, The Journal of comparative neurology.

[86]  S. Mcconnell,et al.  Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[87]  William B. Dobyns,et al.  G Protein-Coupled Receptor-Dependent Development of Human Frontal Cortex , 2004, Science.

[88]  Otto D. Creutzfeldt,et al.  Generality of the functional structure of the neocortex , 1977, Naturwissenschaften.

[89]  G. Fishell,et al.  Neurons from radial glia: the consequences of asymmetric inheritance , 2003, Current Opinion in Neurobiology.

[90]  Keisuke Kuida,et al.  Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice , 1996, Nature.

[91]  M. Götz,et al.  Neuronal or Glial Progeny Regional Differences in Radial Glia Fate , 2003, Neuron.

[92]  Keisuke Kuida,et al.  Reduced Apoptosis and Cytochrome c–Mediated Caspase Activation in Mice Lacking Caspase 9 , 1998, Cell.

[93]  P. Rakic,et al.  Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration , 1994, Current Opinion in Neurobiology.

[94]  G. Edelman,et al.  The Cell in contact : adhesions and junctions as morphogenetic determinants , 1985 .

[95]  Luca Muzio,et al.  Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice , 2000, Nature Neuroscience.

[96]  M. Götz,et al.  Glial cells generate neurons: the role of the transcription factor Pax6 , 2002, Nature Neuroscience.

[97]  J. Rubenstein,et al.  Early neocortical regionalization in the absence of thalamic innervation. , 1999, Science.

[98]  P. Rakic,et al.  Glial cell lineage in the cerebral cortex: A review and synthesis , 1991, Glia.

[99]  L. Tsai,et al.  Cyclin-dependent kinase 5 permits efficient cytoskeletal remodeling--a hypothesis on neuronal migration. , 2006, Cerebral cortex.

[100]  J. García-Verdugo,et al.  Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. , 2003, Cerebral cortex.

[101]  P. Rakić,et al.  Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. , 1983, Developmental biology.

[102]  A. Snyder,et al.  Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. , 2002, Cerebral cortex.

[103]  P. Rakic,et al.  Defects of neuronal migration and the pathogenesis of cortical malformations. , 1988, Progress in brain research.

[104]  Gord Fishell,et al.  The role of notch in promoting glial and neural stem cell fates. , 2002, Annual review of neuroscience.

[105]  G. Moonen,et al.  Radial glia phenotype: Origin, regulation, and transdifferentiation , 2000, Journal of neuroscience research.

[106]  C. Blakemore,et al.  The first neurons of the human cerebral cortex , 2006, Nature Neuroscience.

[107]  P. Rakic,et al.  Origin of GABAergic neurons in the human neocortex , 2002, Nature.

[108]  J G Parnavelas,et al.  Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. , 2003, Cerebral cortex.

[109]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[110]  P. Rakic Pre- and post-developmental neurogenesis in primates , 2002, Clinical Neuroscience Research.

[111]  V. Mountcastle The evolution of ideas concerning the function of the neocortex. , 1995, Cerebral cortex.

[112]  M. Hatten,et al.  New directions for neuronal migration , 1998, Current Opinion in Neurobiology.

[113]  J. Barker,et al.  Glutamate Acting at NMDA Receptors Stimulates Embryonic Cortical Neuronal Migration , 1999, The Journal of Neuroscience.

[114]  V. Mountcastle,et al.  Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. , 1957, Journal of neurophysiology.

[115]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[116]  P. Rakić,et al.  Neuronal migration, with special reference to developing human brain: a review. , 1973, Brain research.

[117]  S. Mcconnell,et al.  Cytoskeletal coordination during neuronal migration. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[118]  P. Rakic Radial versus tangential migration of neuronal clones in the developing cerebral cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[119]  P. Rakić,et al.  Genetic control of cortical development. , 1999, Cerebral cortex.

[120]  Sally Temple,et al.  The development of neural stem cells , 2001, Nature.

[121]  O. Marín,et al.  A long, remarkable journey: Tangential migration in the telencephalon , 2001, Nature Reviews Neuroscience.

[122]  A. Wynshaw-Boris,et al.  LIS1 and dynein motor function in neuronal migration and development. , 2001, Genes & development.

[123]  N. Zečević,et al.  Emerging complexity of layer I in human cerebral cortex. , 2003, Cerebral cortex.

[124]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[125]  P. Vanderhaeghen,et al.  Ephrin signalling controls brain size by regulating apoptosis of neural progenitors , 2005, Nature.

[126]  C. Shatz Impulse activity and the patterning of connections during cns development , 1990, Neuron.

[127]  N. Zečević Specific characteristic of radial glia in the human fetal telencephalon , 2004, Glia.

[128]  D. O'Leary,et al.  Cortical ventricular zone progenitors and their progeny maintain spatial relationships and radial patterning during preplate development indicating an early protomap. , 2006, Cerebral cortex.

[129]  P. Rakic,et al.  Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. , 1997, Development.

[130]  P. Goldman-Rakic Topography of cognition: parallel distributed networks in primate association cortex. , 1988, Annual review of neuroscience.

[131]  P. Rakic,et al.  The role of cell death in regulating the size and shape of the mammalian forebrain. , 1999, Cerebral cortex.

[132]  P. Rakić,et al.  Mechanisms of cortical development: a view from mutations in mice. , 1978, Annual review of neuroscience.

[133]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[134]  P. Rakić Mode of cell migration to the superficial layers of fetal monkey neocortex , 1972, The Journal of comparative neurology.

[135]  F. Valverde,et al.  Dynamics of Cell Migration from the Lateral Ganglionic Eminence in the Rat , 1996, The Journal of Neuroscience.

[136]  P. Rakic,et al.  Differential Modulation of Proliferation in the Neocortical Ventricular and Subventricular Zones , 2000, The Journal of Neuroscience.

[137]  V. Caviness,et al.  The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. , 1991, Cerebral cortex.

[138]  P. Rakic,et al.  Principles of neural cell migration , 1990, Experientia.

[139]  Arnold R Kriegstein,et al.  Patterns of neuronal migration in the embryonic cortex , 2004, Trends in Neurosciences.

[140]  M. Götz,et al.  Characterization of CNS precursor subtypes and radial glia. , 2001, Developmental biology.

[141]  M E Hatten,et al.  Motility and cytoskeletal organization of migrating cerebellar granule neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[142]  C. Walsh,et al.  Human brain malformations and their lessons for neuronal migration. , 2001, Annual review of neuroscience.

[143]  N. Lane The cell in contact: Adhesions and junctions as morphogenetic determinants Edited by G. M. Edelman and J.-P. Thiery. New York: John Wiley & Sons. (1985). 507 pp. $67.50 , 1986, Cell.

[144]  P. Rakic,et al.  Polarity of microtubule assemblies during neuronal cell migration. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[145]  P. Rakić,et al.  Development of Layer I Neurons in the Primate Cerebral Cortex , 2001, The Journal of Neuroscience.

[146]  J. Szentágothai The Ferrier Lecture, 1977 The neuron network of the cerebral cortex: a functional interpretation , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[147]  S. Breen,et al.  Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development , 1993, Nature.

[148]  P. Rakić,et al.  Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain , 1990, The Journal of comparative neurology.

[149]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[150]  P. Rakic,et al.  Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain , 1980, The Journal of comparative neurology.

[151]  P. Rakic,et al.  Identification of membrane proteins that comprise the plasmalemmal junction between migrating neurons and radial glial cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[152]  S. Mcconnell,et al.  Diverse migratory pathways in the developing cerebral cortex. , 1992, Science.

[153]  B. H. Choi Glial Fibrillary Acidic Protein in Radial Glia of Early Human Fetal Cerebrum: A Light and Electron Microscopic Immunoperoxidase Study , 1986, Journal of neuropathology and experimental neurology.

[154]  P. Evrard,et al.  Topographical and Cytological Evolution of the Glial Phase During Prenatal Development of the Human Brain: Histochemical and Electron Microscopic Study , 1988, Journal of neuropathology and experimental neurology.

[155]  P. Rakic,et al.  Arrested proliferation of radial glial cells during midgestation in rhesus monkey , 1979, Nature.

[156]  A. Kriegstein,et al.  Progress in corticogenesis. , 2006, Cerebral cortex.

[157]  G. C. Die Entwicklung des menschlichen Gehirns wahrend der ersten Monate , 1904, Nature.

[158]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[159]  C. Walsh,et al.  The many faces of filamin: A versatile molecular scaffold for cell motility and signalling , 2004, Nature Cell Biology.

[160]  E. Grove,et al.  Neocortex Patterning by the Secreted Signaling Molecule FGF8 , 2001, Science.