Thermal Photonics and Energy Applications

Summary The ability to control thermal radiation plays a fundamentally important role in a wide range of energy technology. Here I review the development of thermal photonics, which utilizes structures where at least one of the structural features is at a wavelength or subwavelength scale, for the control of thermal radiation. Thermal photonic structures have emission properties that are drastically different from those of conventional thermal radiators. These properties lead to new application opportunities in energy technologies, such as daytime radiative cooling.

[1]  Gary D. Bernard,et al.  Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants , 2015, Science.

[2]  Shanhui Fan,et al.  Near complete violation of detailed balance in thermal radiation , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[3]  Aaswath Raman,et al.  Sub-ambient non-evaporative fluid cooling with the sky , 2017, Nature Energy.

[4]  S. Fan,et al.  Narrowband thermal emission from a uniform tungsten surface critically coupled with a photonic crystal guided resonance. , 2016, Optics express.

[5]  David M. Bierman,et al.  A nanophotonic solar thermophotovoltaic device. , 2014, Nature nanotechnology.

[6]  Aaswath Raman,et al.  Radiative cooling of solar cells , 2014 .

[7]  Aaswath Raman,et al.  Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. , 2013, Nano letters.

[8]  Geoff B. Smith,et al.  A Subambient Open Roof Surface under the Mid‐Summer Sun , 2015, Advanced science.

[9]  Irina Puscasu,et al.  Photonic crystal enhanced narrow-band infrared emitters , 2002 .

[10]  D. Ruggi,et al.  The radiative cooling of selective surfaces , 1975 .

[11]  C. Luo,et al.  Thermal radiation from photonic crystals: a direct calculation. , 2004, Physical review letters.

[12]  Shanhui Fan,et al.  Daytime radiative cooling using near-black infrared emitters , 2017 .

[13]  W. C. Snyder,et al.  Thermodynamic Constraints on Reflectance Reciprocity and Kirchhoff's Law. , 1998, Applied optics.

[14]  H. Ries,et al.  Complete and reversible absorption of radiation , 1983 .

[15]  Vladimir M. Shalaev,et al.  Refractory Plasmonics , 2014, Science.

[16]  R. Carminati,et al.  Highly directional radiation generated by a tungsten thermal source. , 2005, Optics letters.

[17]  Steven G. Johnson,et al.  Optical Broadband Angular Selectivity , 2014, CLEO 2014.

[18]  A. Hjortsberg,et al.  Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films , 1981 .

[19]  Marc Abou Anoma,et al.  Passive radiative cooling below ambient air temperature under direct sunlight , 2014, Nature.

[20]  Kwong-Kit Choi,et al.  Enhancement and suppression of thermal emission by a three-dimensional photonic crystal , 2000 .

[21]  Ceji Fu,et al.  Review of near‐field thermal radiation and its application to energy conversion , 2009 .

[22]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[23]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[24]  M. Soljačić,et al.  Tailoring high-temperature radiation and the resurrection of the incandescent source. , 2016, Nature nanotechnology.

[25]  N. Fang,et al.  Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. , 2011, Nano letters.

[26]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[27]  M. Green,et al.  Time-asymmetric photovoltaics. , 2012, Nano letters.

[28]  Masayoshi Esashi,et al.  Thermal radiation from two-dimensionally confined modes in microcavities , 2001 .

[29]  The analog of superradiant emission in thermal emitters , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[30]  Susumu Noda,et al.  Conversion of broadband to narrowband thermal emission through energy recycling , 2012, Nature Photonics.

[31]  P. Santhanam,et al.  Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer , 2015 .

[32]  S. Shen,et al.  Perfect Thermal Emission by Nanoscale Transmission Line Resonators. , 2017, Nano letters.

[33]  Shanhui Fan,et al.  Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. , 2009, Optics express.

[34]  Harry A. Atwater,et al.  Highly efficient GaAs solar cells by limiting light emission angle , 2013, Light: Science & Applications.

[35]  Y. X. Yeng,et al.  Enabling high-temperature nanophotonics for energy applications , 2012, Proceedings of the National Academy of Sciences.

[36]  M. Green,et al.  Comment on “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation” [Appl. Phys. Lett. 83, 380 (2003)] , 2004 .

[37]  Shanhui Fan,et al.  Temporal coupled mode theory for thermal emission from a single thermal emitter supporting either a single mode or an orthogonal set of modes , 2013 .

[38]  Aaswath Raman,et al.  Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle , 2016, Nature Communications.

[39]  Shanhui Fan,et al.  Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody , 2015, Proceedings of the National Academy of Sciences.

[40]  Min Gu,et al.  A Metamaterial Emitter for Highly Efficient Radiative Cooling , 2015 .

[41]  Shanhui Fan,et al.  Universal modal radiation laws for all thermal emitters , 2017, Proceedings of the National Academy of Sciences.

[42]  David M. Bierman,et al.  Metallic Photonic Crystal Absorber‐Emitter for Efficient Spectral Control in High‐Temperature Solar Thermophotovoltaics , 2014 .

[43]  Nicholas P. Sergeant,et al.  Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification , 2013, Nature Communications.

[44]  Ronggui Yang,et al.  Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling , 2017, Science.

[45]  Zongfu Yu,et al.  Enhancing far-field thermal emission with thermal extraction , 2013, Nature Communications.

[46]  David J. Perreault,et al.  Resonant-cavity enhanced thermal emission , 2005 .

[47]  A. Gentle,et al.  Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. , 2010, Nano letters.

[48]  Jonathan P. Dowling,et al.  MODIFICATION OF PLANCK BLACKBODY RADIATION BY PHOTONIC BAND-GAP STRUCTURES , 1999, QELS 2000.

[49]  Shanhui Fan,et al.  Radiative human body cooling by nanoporous polyethylene textile , 2016, Science.

[50]  Z. Jacob,et al.  High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. , 2012, Optics express.

[51]  Bong Jae Lee,et al.  Coherent thermal emission from one-dimensional photonic crystals , 2005 .

[52]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[53]  P. Landsberg,et al.  Thermodynamic energy conversion efficiencies , 1980 .