MINIMAX ESTIMATION OF A CONSTRAINED POISSON VECTOR

and minimax risk p(T), we give analytical and numerical results for small intervals when p = 1. Usually, however, approximations are needed. If T is "rectangulary convex" at 0, there exist linear estimators with risk at most 1.26p(T). For general T, p(T) 2 p2/(p + A(fQ)), where A(Q) is the principal eigenvalue of the Laplace operator on the polydisc transform Q = Ql(T), a domain in twice-p-dimensional space. The bound is asymptotically sharp: p(mT) = p - A(l)/m + o(m'-). Explicit forms are given for T a simplex or a hyperrectangle. We explore the curious parallel of the results for T with those for a Gaussian vector of double the dimension lying in fl.

[1]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[2]  L. Brown A Heuristic Method for Determining Admissibility of Estimators--With Applications , 1979 .

[3]  B. Levit On Asymptotic Minimax Estimates of the Second Order , 1981 .

[4]  J. Zidek,et al.  Simultaneous Estimation of the Means of Independent Poisson Laws , 1975 .

[5]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  D. Aldous Probability Approximations via the Poisson Clumping Heuristic , 1988 .

[8]  Y. Ritov,et al.  Minimax Estimation of the Mean of a General Distribution when the Parameter Space is Restricted , 1987 .

[9]  B. Levit Second-Order Asymptotic Optimality and Positive Solutions of Schrödinger’s Equation , 1986 .

[10]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[11]  P. Bickel Minimax Estimation of the Mean of a Normal Distribution when the Parameter Space is Restricted , 1981 .

[12]  Lawrence D. Brown,et al.  Information Inequalities for the Bayes Risk , 1990 .

[13]  D. Donoho,et al.  Minimax Risk Over Hyperrectangles, and Implications , 1990 .

[14]  G. Casella,et al.  Estimating a Bounded Normal Mean , 1981 .

[15]  I. Ibragimov,et al.  On Nonparametric Estimation of the Value of a Linear Functional in Gaussian White Noise , 1985 .

[16]  L. Payne Isoperimetric Inequalities and Their Applications , 1967 .