Evolution of fragment size distributions from the crushing of granular materials.

We study fragment size distributions after crushing single and many particles under uniaxial compression inside a cylindrical container by means of numerical simulations. Under the assumption that breaking goes through the bulk of the particle we obtain the size distributions of fragments for both cases after large displacements. For the single-particle crushing, this fragmentation mechanism produces a log-normal size distribution, which deviates from the power-law distribution of fragment sizes for the packed bed. We show that as the breaking process evolves, a power-law dependency on the displacement is present for the single grain, while for the many-grains system, the distribution converges to a steady state. We further investigate the force networks and the average coordination number as a function of the particle size, which gives information about the origin of the power-law distributions for the granular assembly under uniaxial compression.

[1]  B R Hajratwala,et al.  Particle size reduction by a hammer mill I: Effect of output screen size, feed particle size, and mill speed. , 1982, Journal of pharmaceutical sciences.

[2]  M. Kuna,et al.  DEM simulation of polyhedral particle cracking using a combined Mohr–Coulomb–Weibull failure criterion , 2017 .

[3]  Farhang Radjai,et al.  Bonded-cell model for particle fracture. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  D. Vallet,et al.  Mechanical behaviour of brittle cement grains , 1995, Journal of Materials Science.

[5]  Dawei Zhao,et al.  A fast contact detection algorithm for 3-D discrete element method , 2004 .

[6]  Ling Li,et al.  Breaking processes in three-dimensional bonded granular materials with general shapes , 2012, Comput. Phys. Commun..

[7]  Malcolm D. Bolton,et al.  Discrete element simulation of crushable soil , 2003 .

[8]  G. McDowell,et al.  Discrete element modelling of railway ballast , 2005 .

[9]  W. Zhou,et al.  Modeling the fragmentation of rock grains using computed tomography and combined FDEM , 2017 .

[10]  Huabin Wang,et al.  A new probabilistic approach for predicting particle crushing in one-dimensional compression of granular soil , 2014 .

[11]  I. Einav,et al.  Force attractor in confined comminution of granular materials. , 2010, Physical review letters.

[12]  J. B. Austin Methods of representing distribution of particle size , 1939 .

[13]  Ronald L. Biegel,et al.  The kinematics of gouge deformation , 1987 .

[14]  Hans J. Herrmann,et al.  A study of fragmentation processes using a discrete element method , 1995, cond-mat/9512017.

[15]  J T Carstensen,et al.  Ball milling as a measure of crushing stength of granules. , 1978, Journal of pharmaceutical sciences.

[16]  P. A. Cundall,et al.  FORMULATION OF A THREE-DIMENSIONAL DISTINCT ELEMENT MODEL - PART I. A SCHEME TO DETECT AND REPRESENT CONTACTS IN A SYSTEM COMPOSED OF MANY POLYHEDRAL BLOCKS , 1988 .

[17]  Falk K. Wittel,et al.  Discrete element modeling of free-standing wire-reinforced jammed granular columns , 2018 .

[18]  Jan Eliáš,et al.  Simulation of railway ballast using crushable polyhedral particles , 2014 .

[19]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[20]  Sebastian Rapp,et al.  Discrete element modeling of the single-particle crushing test for ballast stones , 2017 .

[21]  Gioacchino Viggiani,et al.  An investigation of single sand particle fracture using X-ray micro-tomography , 2015 .

[22]  Hans J. Herrmann,et al.  Fragmentation of grains in a two-dimensional packing , 1998 .

[23]  T. M. Bodas Freitas,et al.  Particle breakage during shearing of a carbonate sand , 2004 .

[24]  F. Radjai,et al.  Three-dimensional bonded-cell model for grain fragmentation , 2017, CPM 2017.

[25]  P. Cundall,et al.  A bonded-particle model for rock , 2004 .

[26]  I. Laufer Grain crushing and high-pressure oedometer tests simulated with the discrete element method , 2015 .

[27]  John J. Motzi,et al.  The Quantitative Evaluation of a Granulation Milling Process I. Algebraic Method for Particle Size Analysis , 1984 .

[28]  O. Stelzer IND , 2020, Catalysis from A to Z.

[29]  J. Carstensen,et al.  Effects of milling on granulation particle-size distribution. , 1974, Journal of pharmaceutical sciences.

[30]  Glenn R. McDowell,et al.  Fractal compression of soil , 2001 .

[31]  Jian Zhao,et al.  Micromechanical parameters in bonded particle method for modelling of brittle material failure , 2010 .

[32]  M. Bolton,et al.  The fractal crushing of granular materials , 1996 .

[33]  P. Gerbino 140 , 2020, Medicine & Science in Sports & Exercise.

[34]  G Timár,et al.  New universality class for the fragmentation of plastic materials. , 2010, Physical review letters.

[35]  Denis Vallet,et al.  Numerical model of crushing of grains inside two-dimensional granular materials , 1999 .

[36]  Eugenio Oñate,et al.  A simple FEM–DEM technique for fracture prediction in materials and structures , 2015 .

[37]  Nicolas Estrada,et al.  Split-Cell Method for grain fragmentation , 2015 .

[38]  P. G. de Gennes,et al.  Granular Matter: A Tentative View , 1999 .

[39]  K. Hanley,et al.  Particle-scale mechanics of sand crushing in compression and shearing using DEM , 2015 .

[40]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[41]  D. Owen,et al.  A combined finite‐discrete element method in transient dynamics of fracturing solids , 1995 .

[42]  Glenn R. McDowell,et al.  Discrete element modelling of soil particle fracture , 2002 .

[43]  Katalin Bagi,et al.  Stress and strain in granular assemblies , 1996 .

[44]  Robert W. Zimmerman,et al.  Fracture and impulse based finite-discrete element modeling of fragmentation , 2013 .

[45]  Lene Oddershede,et al.  Exponential and power-law mass distributions in brittle fragmentation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Benjamin Epstein,et al.  Logarithmico-Normal Distribution in Breakage of Solids , 1948 .

[47]  H. Jaeger,et al.  Granular solids, liquids, and gases , 1996 .

[48]  Glenn R. McDowell,et al.  Particle breakage criteria in discrete-element modelling , 2016 .

[49]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[50]  F. Radjai,et al.  Numerical simulation of the compaction of crushable grains in 3D , 2017 .

[51]  Falk K. Wittel,et al.  Mechanisms in impact fragmentation , 2008 .

[52]  Charles G. Sammis,et al.  An automaton for fractal patterns of fragmentation , 1991, Nature.

[53]  H. Schubert,et al.  Crushing of single irregularly shaped particles by compression: size distribution of progeny particles , 1982 .

[54]  Andy Collop,et al.  The application of Weibull statistics to the strength of railway ballast , 2004 .

[55]  Youssef M A Hashash,et al.  Shortest link method for contact detection in discrete element method , 2006 .

[56]  Andy Collop,et al.  Measuring the strength of railway ballast , 2003 .

[57]  W. Weibull A statistical theory of the strength of materials , 1939 .

[58]  Yuanli Bai,et al.  Application of extended Mohr–Coulomb criterion to ductile fracture , 2009 .

[59]  R. Peikert,et al.  THE FRACTAL DIMENSION OF THE APOLLONIAN SPHERE PACKING , 1994 .