Electron‐Scale Current Sheet as the Boundary of a Linear Magnetic Hole in the Terrestrial Current Sheet Observed by the Magnetospheric Multiscale Mission

Ion‐scale and electron‐scale magnetic holes widely exist in many space plasma regions, and have been extensively studied. However, characteristics of the charged particles and current densities inside the linear magnetic holes (LMHs) with a size between typical ion and electron scales are unclear. Here, we report a LMH with a cross section size of ∼2.4 ion gyroradii in the terrestrial current sheet using the high‐resolution data of the Magnetospheric Multiscale Mission. We find that the electron velocity and temperature have significant variations at the sharp boundaries of this LMH, while the ion parameters have no significant change. The decrease of the magnetic field pressure is mainly balanced by the electron thermal pressure. A strong electron flow accompanied by an enhancement of the electric field is formed by electron drift motions on the outermost boundary with a thickness of 0.12–0.24 ion gyroradius. This electric field might originate from variations of the ion and electron gyrations when crossing the sharp boundary. The electron flow forms a thin current sheet on the outermost side of the LMH instead of being distributed over the entire cross section. Most of the trapped electrons are wrapped by this thin current sheet. These results could improve our understanding of the properties of LMHs with a size between typical ion and electron scales.

[1]  M. Volwerk,et al.  Statistical Study of Small-scale Magnetic Holes in the Upstream Regime of the Martian Bow Shock , 2021, The Astrophysical Journal.

[2]  M. Volwerk,et al.  Field‐Aligned Currents Originating From the Chaotic Motion of Electrons in the Tilted Current Sheet: MMS Observations , 2021, Geophysical Research Letters.

[3]  M. Volwerk,et al.  First Observations of an Ion Vortex in a Magnetic Hole in the Solar Wind by MMS , 2021 .

[4]  Tielong Zhang,et al.  Statistical Properties of Small-scale Linear Magnetic Holes in the Martian Magnetosheath , 2021 .

[5]  M. Volwerk,et al.  Foreshock as a Source Region of Electron-scale Magnetic Holes in the Solar Wind at 1 au , 2021 .

[6]  M. Volwerk,et al.  Three-dimensional Geometry of the Electron-scale Magnetic Hole in the Solar Wind , 2020, The Astrophysical Journal Letters.

[7]  M. Volwerk,et al.  Study of the Electron Velocity Inside Sub‐Ion‐Scale Magnetic Holes in the Solar Wind by MMS Observations , 2020, Journal of Geophysical Research: Space Physics.

[8]  M. Volwerk,et al.  Statistical Properties of Sub‐Ion Magnetic Holes in the Solar Wind at 1 AU , 2020, Journal of Geophysical Research: Space Physics.

[9]  Michael T. McManus,et al.  Evidence of Subproton‐Scale Magnetic Holes in the Venusian Magnetosheath , 2020, Geophysical Research Letters.

[10]  M. Volwerk,et al.  Statistical study of linear magnetic hole structures near Earth , 2020, Annales Geophysicae.

[11]  M. Volwerk,et al.  Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations , 2020 .

[12]  H. Zhang,et al.  MMS observations of electron scale magnetic cavity embedded in proton scale magnetic cavity , 2019, Nature Communications.

[13]  W. Teh Two‐Dimensional Reconstruction of Magnetic Mirror Structures With Pressure Anisotropy: Theory and Application , 2019, Journal of Geophysical Research: Space Physics.

[14]  V. Angelopoulos,et al.  The Hall Electric Field in Earth's Magnetotail Thin Current Sheet , 2019, Journal of Geophysical Research: Space Physics.

[15]  I. J. Rae,et al.  Waves in Kinetic‐Scale Magnetic Dips: MMS Observations in the Magnetosheath , 2019, Geophysical Research Letters.

[16]  M. Volwerk,et al.  Solar Wind Directional Change Triggering Flapping Motions of the Current Sheet: MMS Observations , 2019, Geophysical Research Letters.

[17]  V. Angelopoulos,et al.  Statistical Properties of Sub‐Ion Magnetic Holes in the Dipolarized Magnetotail: Formation, Structure, and Dynamics , 2019, Journal of Geophysical Research: Space Physics.

[18]  E. Antonova,et al.  Magnetic holes observed in the ring current region near the equatorial plane , 2017, Journal of Atmospheric and Solar-Terrestrial Physics.

[19]  M. Volwerk,et al.  High‐latitude Pi2 pulsations associated with kink‐like neutral sheet oscillations , 2017 .

[20]  C. Russell,et al.  Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma , 2016, 1612.08787.

[21]  K. Glassmeier,et al.  Mirror mode waves in Venus's magnetosheath: solar minimum vs. solar maximum , 2016 .

[22]  Wolfgang Baumjohann,et al.  Mirror mode structures ahead of dipolarization front near the neutral sheet observed by Cluster , 2016 .

[23]  R. Ergun,et al.  Electric fields associated with small‐scale magnetic holes in the plasma sheet: Evidence for electron currents , 2016 .

[24]  U. Gliese,et al.  Fast Plasma Investigation for Magnetospheric Multiscale , 2016 .

[25]  Thomas E. Moore,et al.  Magnetospheric Multiscale Overview and Science Objectives , 2016 .

[26]  Wolfgang Baumjohann,et al.  The Magnetospheric Multiscale Magnetometers , 2016 .

[27]  S. Persyn,et al.  Hot Plasma Composition Analyzer for the Magnetospheric Multiscale Mission , 2016 .

[28]  Wolfgang Baumjohann,et al.  The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products , 2016 .

[29]  Wolfgang Baumjohann,et al.  A statistical study on the shape and position of the magnetotail neutral sheet , 2016 .

[30]  T. Sundberg,et al.  Properties and origin of subproton‐scale magnetic holes in the terrestrial plasma sheet , 2015 .

[31]  T. Sundberg,et al.  Electron vortex magnetic holes: A nonlinear coherent plasma structure , 2014, 1412.5928.

[32]  L. Stenflo,et al.  Physical mechanisms for electron mirror and field swelling modes , 2013 .

[33]  B. Tsurutani,et al.  Ion temperature anisotropy instabilities in planetary magnetosheaths , 2013 .

[34]  M. Balikhin,et al.  Magnetic holes in the vicinity of dipolarization fronts: Mirror or tearing structures? , 2012 .

[35]  M. Dunlop,et al.  Cluster and TC-1 observation of magnetic holes in the plasma sheet , 2012 .

[36]  O. Amariutei,et al.  Occurrence rate of magnetic holes between 0.72 and 1 AU: comparative study of Cluster and VEX data , 2011 .

[37]  D. Constantinescu,et al.  Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: Differences and distinguishing features , 2011 .

[38]  O. D. Constantinescu,et al.  Case studies of mirror‐mode structures observed by THEMIS in the near‐Earth tail during substorms , 2011 .

[39]  R. Sagdeev,et al.  THEMIS observations of mirror structures: Magnetic holes and instability threshold , 2009 .

[40]  N. Omidi,et al.  Mirror mode waves: Messengers from the coronal heating region , 2008 .

[41]  C. Russell,et al.  Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU , 2008 .

[42]  J. Richardson,et al.  Temperature Anisotropy in a Shocked Plasma: Mirror-Mode Instabilities in the Heliosheath , 2007, astro-ph/0702599.

[43]  M. Acuna,et al.  Trains of magnetic holes and magnetic humps in the heliosheath , 2006 .

[44]  R. Sagdeev,et al.  Mirror instability at finite ion-Larmor radius wavelengths , 2004 .

[45]  T. Horbury,et al.  Size, shape, and orientation of magnetosheath mirror mode structures , 2002 .

[46]  M. W. Dunlop,et al.  Four‐point Cluster application of magnetic field analysis tools: The Curlometer , 2002 .

[47]  O. D. Constantinescu Self-consistent model of mirror structures , 2002 .

[48]  P. Seeluangsawat Magnetic holes in the solar wind , 2002 .

[49]  N. Ness,et al.  Magnetic holes in the solar wind between 0.3 AU and 17 AU , 2000 .

[50]  B. Sonnerup,et al.  Minimum and Maximum Variance Analysis , 1998 .

[51]  Christopher C. Harvey,et al.  Spatial Gradients and the Volumetric Tensor , 1998 .

[52]  B. Murphy Charge Separation Effects in the Chapman‐Ferraro‐Rosenbluth Cold Plasma Sheath Model , 1969 .

[53]  A. Hasegawa Drift Mirror Instability in the Magnetosphere , 1969 .

[54]  A. Sestero Charge Separation Effects in the Ferraro‐Rosenbluth Cold Plasma Sheath Model , 1965 .