Quantifying Double McCormick
暂无分享,去创建一个
[1] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[2] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[3] Hermann Schichl,et al. Interval Analysis on Directed Acyclic Graphs for Global Optimization , 2005, J. Glob. Optim..
[4] James R. Luedtke,et al. Some results on the strength of relaxations of multilinear functions , 2012, Math. Program..
[5] François Margot,et al. Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities , 2016, Oper. Res..
[6] Christodoulos A. Floudas,et al. Trilinear Monomials with Positive or Negative Domains: Facets of the Convex and Concave Envelopes , 2004 .
[7] Leo Liberti,et al. Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..
[8] E. Steingrímsson,et al. A decomposition of 2-weak vertex-packing polytopes , 1994 .
[9] Christodoulos A. Floudas,et al. Convex envelopes for edge-concave functions , 2005, Math. Program..
[10] Edward M. B. Smith,et al. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .
[11] Hermann Schichl,et al. Interval propagation and search on directed acyclic graphs for numerical constraint solving , 2009, J. Glob. Optim..
[12] Robert Weismantel,et al. The Convex Envelope of (n--1)-Convex Functions , 2008, SIAM J. Optim..
[13] Nikolaos V. Sahinidis,et al. Analysis of Bounds for Multilinear Functions , 2001, J. Glob. Optim..
[14] Han Yu,et al. Experimental Validation of Volume-Based Comparison for Double-McCormick Relaxations , 2017, CPAIOR.
[15] Jon Lee,et al. Mixed-integer nonlinear programming: Some modeling and solution issues , 2007, IBM J. Res. Dev..
[16] Anatoliy D. Rikun,et al. A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..
[17] Sonia Cafieri,et al. Reformulations in Mathematical Programming: A Computational Approach , 2009, Foundations of Computational Intelligence.
[18] E. Steigrímsson,et al. A decomposition of 2-weak vertex-packing polytopes , 1994, Discret. Comput. Geom..
[19] Garth P. McCormick,et al. Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..
[20] Jon Lee,et al. The volume of relaxed Boolean-quadric and cut polytopes , 1997, Discret. Math..
[21] Jon Lee,et al. Geometric Comparison of Combinatorial Polytopes , 1994, Discret. Appl. Math..
[22] Christodoulos A. Floudas,et al. Trilinear Monomials with Mixed Sign Domains: Facets of the Convex and Concave Envelopes , 2004, J. Glob. Optim..
[23] A. Neumaier,et al. A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .
[24] Sonia Cafieri,et al. On convex relaxations of quadrilinear terms , 2010, J. Glob. Optim..
[25] Nikolaos V. Sahinidis,et al. A branch-and-reduce approach to global optimization , 1996, J. Glob. Optim..
[26] Sonia Cafieri,et al. The Reformulation-Optimization Software Engine , 2010, ICMS.
[27] Nikolaos V. Sahinidis,et al. Global optimization of nonconvex problems with multilinear intermediates , 2015, Math. Program. Comput..
[28] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[29] Leo Liberti,et al. Relaxations of Multilinear Convex Envelopes: Dual Is Better Than Primal , 2012, SEA.