Numerical Modeling of Cutting Forces and Temperature Distribution in High Speed Cryogenic and Flood-cooled Milling of Ti-6Al-4V

[1]  J. Rech,et al.  Hybrid experimental/modelling methodology for identifying the convective heat transfer coefficient in cryogenic assisted machining , 2018 .

[2]  Janez Kopac,et al.  Analysis of the influence of nitrogen phase and surface heat transfer coefficient on cryogenic machining performance , 2016 .

[3]  I. S. Jawahir,et al.  Increased Surface Integrity in Porous Tungsten from Cryogenic Machining with Cermet Cutting Tool , 2016 .

[4]  I. S. Jawahir,et al.  The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy , 2013, The International Journal of Advanced Manufacturing Technology.

[5]  Michele Monno,et al.  Comparison of Ti6Al4V machining forces and tool life for cryogenic versus conventional cooling , 2013 .

[6]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[7]  Matthew S. Dargusch,et al.  New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V , 2011 .

[8]  Y. Shin,et al.  An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity , 2011 .

[9]  J. Rech,et al.  Effects of Lubrication Mode on Friction and Heat Partition Coefficients at the Tool–Work Material Interface in Machining , 2011 .

[10]  Mohammad Sima,et al.  Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V , 2010 .

[11]  F. Girot,et al.  A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V , 2008 .

[12]  D. Umbrello Finite element simulation of conventional and high speed machining of Ti6Al4V alloy , 2008 .

[13]  A. B. Chattopadhyay,et al.  Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling , 2007 .

[14]  Fabrizio Micari,et al.  A critical analysis on the friction modelling in orthogonal machining , 2007 .

[15]  C. H. Ward,et al.  Titanium Alloys for Aerospace Applications , 2003 .

[16]  Shane Y. Hong,et al.  Friction and cutting forces in cryogenic machining of Ti–6Al–4V , 2001 .

[17]  Shane Y. Hong,et al.  Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V , 2001 .

[18]  G. R. Johnson,et al.  A CONSTITUTIVE MODEL AND DATA FOR METALS SUBJECTED TO LARGE STRAINS, HIGH STRAIN RATES AND HIGH TEMPERATURES , 2018 .

[19]  D. Umbrello,et al.  Machining Simulation of Ti6Al4V under Dry and Cryogenic Conditions , 2017 .

[20]  I. Jawahir,et al.  Improved Surface Integrity from Cryogenic Machining of Ti-6Al-7Nb Alloy for Biomedical Applications☆ , 2016 .

[21]  Vimal Dhokia,et al.  Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy , 2016 .

[22]  Stefania Bruschi,et al.  Finite Element Simulation of Semi-finishing Turning of Electron Beam Melted Ti6Al4V Under Dry and Cryogenic Cooling , 2015 .

[23]  Domenico Umbrello,et al.  Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy , 2014 .

[24]  M. Dhananchezian,et al.  Experimental Investigation of Cryogenic Cooling by Liquid Nitrogen in the Orthogonal Machining Process , 2009 .

[25]  Chi Feng Lin,et al.  Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures , 1998 .