Synthesis of new functionalized calix[n]phyrin macrocycles with varied ring sizes by using a sterically congested dipyrromethane.
暂无分享,去创建一个
[1] H. Reissig,et al. Synthesis of Functionalized, Sterically Congested Calix[4]phyrin Macrocycles Using Donor–Acceptor‐Substituted Cyclopropanes – First Example of a Mono‐meso‐spirolactone Incorporated into a Calix[4]phyrin , 2013 .
[2] M. Neves,et al. 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin: a versatile platform to novel porphyrinic materials , 2011 .
[3] A. Osuka,et al. Expandierte Porphyrine: überraschende Strukturen, elektronische Eigenschaften und Reaktivitäten , 2011 .
[4] A. Osuka,et al. Expanded porphyrins: intriguing structures, electronic properties, and reactivities. , 2011, Angewandte Chemie.
[5] V. Lynch,et al. N-Tosylpyrrolidine calix[4]pyrrole: synthesis and ion binding studies. , 2011, The Journal of organic chemistry.
[6] M. Beneš,et al. Regiospecific nucleophilic substitution in 2,3,4,5,6-pentafluorobiphenyl as model compound for supramolecular systems. Theoretical study of transition states and energy profiles, evidence for tetrahedral SN2 mechanism , 2010 .
[7] S. Giordani,et al. Structural, spectroscopic, and anion-binding properties of 5,10-porphodimethenes, an unusual class of calixphyrins. , 2010, The journal of physical chemistry. A.
[8] W. Dehaen. Calix(n)phyrins: Synthesis and Anion Recognition , 2010 .
[9] M. Kerr,et al. Heterocycles from cyclopropanes: applications in natural product synthesis. , 2009, Chemical Society reviews.
[10] U. Beifuss,et al. Influence of bases and ligands on the outcome of the Cu(I)-catalyzed oxidative homocoupling of terminal alkynes to 1,4-disubstituted 1,3-diynes using oxygen as an oxidant. , 2009, The Journal of organic chemistry.
[11] Wei Chen,et al. Synthesis and characterization of novel calix[6]phyrin derivatives , 2008 .
[12] Y. Terada,et al. Near-infrared emission from bis-Pt(II) complexes of doubly N-confused calix[6]phyrins(1.1.1.1.1.1). , 2008, Angewandte Chemie.
[13] R. Varma,et al. Microwave-assisted organic synthesis and transformations using benign reaction media. , 2008, Accounts of chemical research.
[14] S. Sakaki,et al. Syntheses, structures, and coordination chemistry of phosphole-containing hybrid calixphyrins: promising macrocyclic P,N2,X-mixed donor ligands for designing reactive transition-metal complexes. , 2008, Journal of the American Chemical Society.
[15] R. Boyle,et al. Isothiocyanato-calix[4]phyrin-(1,1,1,1): a useful intermediate for the synthesis of derivatised anion sensors. , 2007, Organic & biomolecular chemistry.
[16] Tabitha E. Wood,et al. Advances in the chemistry of dipyrrins and their complexes. , 2007, Chemical reviews.
[17] Aki Tsukajima,et al. Synthesis and Chiroptical Property of C2-Symmetric Cyclohexapyrrole , 2007 .
[18] S. Sakaki,et al. Phosphorus-containing hybrid calixphyrins: promising mixed-donor ligands for visible and efficient palladium catalysts. , 2006, Journal of the American Chemical Society.
[19] F. Thomas,et al. Calix[4]phyrin based redox architectures: towards new molecular tools for electrochemical sensing. , 2005, Dalton transactions.
[20] J. Lindsey,et al. Direct synthesis of palladium porphyrins from acyldipyrromethanes. , 2005, The Journal of organic chemistry.
[21] Ming‐Shiuan Yu,et al. Recent advances in donor-acceptor (DA) cyclopropanes , 2005 .
[22] S. Neya,et al. Convenient synthesis of porphine from β-tetra(tert-butyl)porphyrin , 2004 .
[23] P. Bouř,et al. Calix[4]phyrins. Effect of peripheral substituents on conformational mobility and structure within a series of related systems. , 2004, Journal of the American Chemical Society.
[24] Philip A. Gale,et al. Pyrrolic and polypyrrolic anion binding agents , 2003 .
[25] R. Zimmer,et al. Donor-acceptor-substituted cyclopropane derivatives and their application in organic synthesis. , 2003, Chemical reviews.
[26] V. Lynch,et al. Synthesis of novel expanded calixphyrins: anion binding properties of a calix[6]phyrin with a deep cavity. , 2001, Journal of the American Chemical Society.
[27] J. Sessler,et al. Calixphyrins. Hybrid macrocycles at the structural crossroads between porphyrins and calixpyrroles , 2001 .
[28] V. Lynch,et al. Calixphyrins: Novel Macrocycles at the Intersection between Porphyrins and Calixpyrroles , 2000 .
[29] J. Lindsey,et al. Synthesis of β-substituted porphyrin building blocks and conversion to diphenylethyne-linked porphyrin dimers , 1999 .
[30] H. Reissig. Donor-acceptor-substituted cyclopropanes: versatile building blocks in organic synthesis , 1988 .
[31] H. Reissig,et al. Synthese von 2-siloxysubstituierten Cyclopropancarbonsäure-methylestern , 1984 .