Synthesis of new functionalized calix[n]phyrin macrocycles with varied ring sizes by using a sterically congested dipyrromethane.

Congest and conjugate: The application of a sterically congested dipyrromethane in an acid-catalyzed [2+2+2] building-block approach was studied for the first time, resulting in the formation of two stable calix[6]phyrin(1.1.1.1.1.1) diastereomers (see scheme). The calix[n]phyrins were further functionalized at their pentafluorophenyl residues, allowing the first synthesis of a calix[4]phyrin(1.1.1.1) dimer.

[1]  H. Reissig,et al.  Synthesis of Functionalized, Sterically Congested Calix[4]phyrin Macrocycles Using Donor–Acceptor‐Substituted Cyclopropanes – First Example of a Mono‐meso‐spirolactone Incorporated into a Calix[4]phyrin , 2013 .

[2]  M. Neves,et al.  5,10,15,20-tetrakis(pentafluorophenyl)porphyrin: a versatile platform to novel porphyrinic materials , 2011 .

[3]  A. Osuka,et al.  Expandierte Porphyrine: überraschende Strukturen, elektronische Eigenschaften und Reaktivitäten , 2011 .

[4]  A. Osuka,et al.  Expanded porphyrins: intriguing structures, electronic properties, and reactivities. , 2011, Angewandte Chemie.

[5]  V. Lynch,et al.  N-Tosylpyrrolidine calix[4]pyrrole: synthesis and ion binding studies. , 2011, The Journal of organic chemistry.

[6]  M. Beneš,et al.  Regiospecific nucleophilic substitution in 2,3,4,5,6-pentafluorobiphenyl as model compound for supramolecular systems. Theoretical study of transition states and energy profiles, evidence for tetrahedral SN2 mechanism , 2010 .

[7]  S. Giordani,et al.  Structural, spectroscopic, and anion-binding properties of 5,10-porphodimethenes, an unusual class of calixphyrins. , 2010, The journal of physical chemistry. A.

[8]  W. Dehaen Calix(n)phyrins: Synthesis and Anion Recognition , 2010 .

[9]  M. Kerr,et al.  Heterocycles from cyclopropanes: applications in natural product synthesis. , 2009, Chemical Society reviews.

[10]  U. Beifuss,et al.  Influence of bases and ligands on the outcome of the Cu(I)-catalyzed oxidative homocoupling of terminal alkynes to 1,4-disubstituted 1,3-diynes using oxygen as an oxidant. , 2009, The Journal of organic chemistry.

[11]  Wei Chen,et al.  Synthesis and characterization of novel calix[6]phyrin derivatives , 2008 .

[12]  Y. Terada,et al.  Near-infrared emission from bis-Pt(II) complexes of doubly N-confused calix[6]phyrins(1.1.1.1.1.1). , 2008, Angewandte Chemie.

[13]  R. Varma,et al.  Microwave-assisted organic synthesis and transformations using benign reaction media. , 2008, Accounts of chemical research.

[14]  S. Sakaki,et al.  Syntheses, structures, and coordination chemistry of phosphole-containing hybrid calixphyrins: promising macrocyclic P,N2,X-mixed donor ligands for designing reactive transition-metal complexes. , 2008, Journal of the American Chemical Society.

[15]  R. Boyle,et al.  Isothiocyanato-calix[4]phyrin-(1,1,1,1): a useful intermediate for the synthesis of derivatised anion sensors. , 2007, Organic & biomolecular chemistry.

[16]  Tabitha E. Wood,et al.  Advances in the chemistry of dipyrrins and their complexes. , 2007, Chemical reviews.

[17]  Aki Tsukajima,et al.  Synthesis and Chiroptical Property of C2-Symmetric Cyclohexapyrrole , 2007 .

[18]  S. Sakaki,et al.  Phosphorus-containing hybrid calixphyrins: promising mixed-donor ligands for visible and efficient palladium catalysts. , 2006, Journal of the American Chemical Society.

[19]  F. Thomas,et al.  Calix[4]phyrin based redox architectures: towards new molecular tools for electrochemical sensing. , 2005, Dalton transactions.

[20]  J. Lindsey,et al.  Direct synthesis of palladium porphyrins from acyldipyrromethanes. , 2005, The Journal of organic chemistry.

[21]  Ming‐Shiuan Yu,et al.  Recent advances in donor-acceptor (DA) cyclopropanes , 2005 .

[22]  S. Neya,et al.  Convenient synthesis of porphine from β-tetra(tert-butyl)porphyrin , 2004 .

[23]  P. Bouř,et al.  Calix[4]phyrins. Effect of peripheral substituents on conformational mobility and structure within a series of related systems. , 2004, Journal of the American Chemical Society.

[24]  Philip A. Gale,et al.  Pyrrolic and polypyrrolic anion binding agents , 2003 .

[25]  R. Zimmer,et al.  Donor-acceptor-substituted cyclopropane derivatives and their application in organic synthesis. , 2003, Chemical reviews.

[26]  V. Lynch,et al.  Synthesis of novel expanded calixphyrins: anion binding properties of a calix[6]phyrin with a deep cavity. , 2001, Journal of the American Chemical Society.

[27]  J. Sessler,et al.  Calixphyrins. Hybrid macrocycles at the structural crossroads between porphyrins and calixpyrroles , 2001 .

[28]  V. Lynch,et al.  Calixphyrins: Novel Macrocycles at the Intersection between Porphyrins and Calixpyrroles , 2000 .

[29]  J. Lindsey,et al.  Synthesis of β-substituted porphyrin building blocks and conversion to diphenylethyne-linked porphyrin dimers , 1999 .

[30]  H. Reissig Donor-acceptor-substituted cyclopropanes: versatile building blocks in organic synthesis , 1988 .

[31]  H. Reissig,et al.  Synthese von 2-siloxysubstituierten Cyclopropancarbonsäure-methylestern , 1984 .