Tunable Berry curvature, valley and spin Hall eect in Bilayer MoS2

ThechiralityofelectronicBlochbandsisresponsibleformanyintriguingpropertiesoflayeredtwo-dimensional materials.Weshowthatinbilayersoftransitionmetaldichalcogenides(TMDCs),unlikeinfew-layergrapheneand monolayer TMDCs, both intralayer and interlayer couplings give important contributions to the Berry curvature in the K and − K valleys of the Brillouin zone. The interlayer contribution leads to the stacking dependence of the Berry curvature and we point out the differences between the commonly available 3R type and 2H type bilayers. Due to the interlayer contribution, the Berry curvature becomes highly tunable in double gated devices. We study the dependence of the valley Hall and spin Hall effects on the stacking type and external electric field. Although the valley and spin Hall conductivities are not quantized, in MoS 2 2H bilayers, they may change sign as a function of the external electric field, which is reminiscent of the behavior of lattice Chern insulators.

[1]  Di Xiao,et al.  Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems. , 2017, Physical review letters.

[2]  D. Costanzo,et al.  Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides Revealed by Wavelength-Dependent Mapping. , 2017, Nano letters.

[3]  J. Chu,et al.  Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides , 2016, 1606.07985.

[4]  Shoushun Chen,et al.  Stacking-Dependent Interlayer Coupling in Trilayer MoS₂ with Broken Inversion Symmetry. , 2015, Nano letters.

[5]  L'aszl'o Oroszl'any,et al.  A Short Course on Topological Insulators: Band-structure topology and edge states in one and two dimensions , 2015, 1509.02295.

[6]  J. Shan,et al.  Electrical control of the valley Hall effect in bilayer MoS2 transistors. , 2015, Nature nanotechnology.

[7]  Di Xiao,et al.  Berry Phase Modification to the Energy Spectrum of Excitons. , 2015, Physical review letters.

[8]  A. Srivastava,et al.  Signatures of Bloch-Band Geometry on Excitons: Nonhydrogenic Spectra in Transition-Metal Dichalcogenides. , 2015, Physical review letters.

[9]  Georgios A. Tritsaris,et al.  Ab initio tight-binding Hamiltonian for transition metal dichalcogenides , 2015, 1506.08860.

[10]  Y. Tokura,et al.  Two-Dimensional Valley Electrons and Excitons in Noncentrosymmetric 3R−MoS2 , 2015, 1502.07480.

[11]  M. Calandra,et al.  First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity , 2015, 1501.07223.

[12]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[13]  R. Winkler,et al.  Electromagnetic coupling of spins and pseudospins in bilayer graphene , 2014, 1411.1720.

[14]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[15]  Yingchang Yang,et al.  Tunable Valley Polarization and Valley Orbital Magnetic Moment Hall Effect in Honeycomb Systems with Broken Inversion Symmetry , 2014, Scientific Reports.

[16]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[17]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[18]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[19]  G. Burkard,et al.  Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides , 2013, 1310.7720.

[20]  O. Kolosov,et al.  Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates , 2013, Scientific Reports.

[21]  G. Burkard,et al.  Monolayer MoS 2 : Trigonal warping, the Γ valley, and spin-orbit coupling effects , 2013, 1304.4084.

[22]  B. Bernevig Topological Insulators and Topological Superconductors , 2013 .

[23]  Xiaodong Xu,et al.  Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers , 2013, Nature Communications.

[24]  R. Asgari,et al.  Effective lattice Hamiltonian for monolayer MoS 2 : Tailoring electronic structure with perpendicular electric and magnetic fields , 2013, 1302.5901.

[25]  G. Burkard,et al.  Intrinsic and substrate induced spin-orbit interaction in chirally stacked trilayer graphene , 2012, 1210.7158.

[26]  Yugui Yao,et al.  Intrinsic spin Hall effect in monolayers of group-VI dichalcogenides: A first-principles study , 2012, 1209.1964.

[27]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, Nature Physics.

[28]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[29]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[30]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[31]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[32]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[33]  Jaroslav Fabian,et al.  Theory of spin-orbit coupling in bilayer graphene , 2011, 1111.7223.

[34]  A. MacDonald,et al.  Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. , 2010, Physical review letters.

[35]  A. Morpurgo,et al.  Topological origin of subgap conductance in insulating bilayer graphene , 2010, 1009.4851.

[36]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[37]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[38]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[39]  Wang Yao,et al.  Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.

[40]  T. Fukui,et al.  Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances , 2005, cond-mat/0503172.

[41]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[42]  S. Murakami,et al.  Dissipationless Quantum Spin Current at Room Temperature , 2003, Science.

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  G. Beck,et al.  Spin--orbit coupling , 1975 .

[45]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[46]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[47]  B. Trauzettel,et al.  Group theoretical and topological analysis of the quantum spin Hall effect in silicene , 2013 .

[48]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .