A refined machinery to calculate large moments from coupled systems of linear differential equations

The large moment method can be used to compute a large number of moments of physical quantities that are described by coupled systems of linear differential equations. Besides these systems the algorithm requires a certain number of initial values as input, that are often hard to derive in a preprocessing step. Thus a major challenge is to keep the number of initial values as small as possible. We present the basic ideas of the underlying large moment method and present refined versions that reduce significantly the number of required initial values.

[1]  J. Blumlein,et al.  Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering: Recent Results , 2017, 1711.07957.

[2]  Carsten Schneider,et al.  A toolbox to solve coupled systems of differential and difference equations , 2016, ArXiv.

[3]  A. von Manteuffel,et al.  Reduze 2 - Distributed Feynman Integral Reduction , 2012, 1201.4330.

[4]  A. Kotikov NEW METHOD OF MASSIVE FEYNMAN DIAGRAMS CALCULATION , 1991 .

[5]  Carsten Schneider,et al.  Séminaire Lotharingien de Combinatoire 56 (2007), Article B56b SYMBOLIC SUMMATION ASSISTS COMBINATORICS , 2022 .

[6]  Carsten Schneider,et al.  Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms , 2013, Journal of Mathematical Physics.

[7]  Carsten Schneider,et al.  Fast Algorithms for Refined Parameterized Telescoping in Difference Fields , 2013, Computer Algebra and Polynomials.

[8]  C. Studerus,et al.  Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..

[9]  S. Laporta,et al.  difference equations , 2001 .

[10]  Carsten Schneider,et al.  Minimal Representations and Algebraic Relations for Single Nested Products , 2019, Programming and Computer Software.

[11]  Stefan Weinzierl,et al.  Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .

[12]  Carsten Schneider,et al.  Summation Theory II: Characterizations of RΠΣ⁎-extensions and algorithmic aspects , 2017, J. Symb. Comput..

[13]  J. Blumlein,et al.  The heavy fermion contributions to the massive three loop form factors , 2019, Nuclear Physics B.

[14]  M. Steinhauser MATAD: a program package for the computation of MAssive TADpoles , 2000 .

[15]  Carsten Schneider,et al.  Modern Summation Methods for Loop Integrals in Quantum Field Theory: The Packages Sigma, EvaluateMultiSums and SumProduction , 2013, Journal of Physics: Conference Series.

[16]  Jakob Ablinger,et al.  A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics , 2010, 1011.1176.

[17]  Fredrik Johansson,et al.  Ore Polynomials in Sage , 2013, Computer Algebra and Polynomials.

[18]  Flavia Stan,et al.  A symbolic summation approach to Feynman integral calculus , 2010, J. Symb. Comput..

[19]  P. Vanhove,et al.  The elliptic dilogarithm for the sunset graph , 2013, 1309.5865.

[20]  S. A. Abramov,et al.  Rational solutions of linear differential and difference equations with polynomial coefficients , 1991 .

[21]  J. Blumlein,et al.  Automated solution of first order factorizable systems of differential equations in one variable , 2018, Nuclear Physics B.

[22]  Carsten Schneider,et al.  The Method of Arbitrarily Large Moments to Calculate Single Scale Processes in Quantum Field Theory , 2017, Physics Letters B.

[23]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[24]  S. Moch,et al.  The third-order QCD corrections to deep-inelastic scattering by photon exchange , 2005, hep-ph/0504242.

[25]  S. Weinzierl,et al.  The kite integral to all orders in terms of elliptic polylogarithms , 2016, 1607.01571.

[27]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[28]  Jakob Ablinger,et al.  Computer Algebra Algorithms for Special Functions in Particle Physics , 2013, 1305.0687.

[29]  A. von Manteuffel,et al.  The 3-loop pure singlet heavy flavor contributions to the structure function F2(x,Q2) and the anomalous dimension , 2014, 1409.1135.

[30]  Z. Bern,et al.  Dimensionally regulated one-loop integrals , 1993 .

[31]  Carsten Schneider,et al.  A refined difference field theory for symbolic summation , 2008, J. Symb. Comput..

[32]  J. Blumlein,et al.  The 3-loop non-singlet heavy flavor contributions to the structure function g1(x,Q2) at large momentum transfer , 2015, 1504.08217.

[33]  R. Lee Reducing differential equations for multiloop master integrals , 2014, 1411.0911.

[34]  Carsten Schneider,et al.  Algorithms to solve coupled systems of differential equations in terms of power series , 2016, ArXiv.

[35]  J. Fleischer,et al.  Two-loop two-point functions with masses: asymptotic expansions and Taylor series, in any dimension , 1993 .

[36]  J. A. M. Vermaseren Harmonic sums, Mellin transforms and Integrals , 1999 .

[37]  Carsten Schneider,et al.  Algebraic Independence of Sequences Generated by (Cyclotomic) Harmonic Sums , 2015, 1510.03692.

[38]  Carsten Schneider,et al.  Solving parameterized linear difference equations in terms of indefinite nested sums and products , 2005 .

[39]  J. Blumlein,et al.  Iterated Binomial Sums and their Associated Iterated Integrals , 2014, 1407.1822.

[40]  J. Blumlein Algebraic Relations Between Harmonic Sums and Associated Quantities , 2003 .

[41]  J. Blümlein,et al.  The O ( α 3 s T 2 F ) Contributions to the Gluonic Operator Matrix Element , 2014 .

[42]  A. Vogt,et al.  The Three-loop splitting functions in QCD: The Singlet case , 2004, hep-ph/0404111.

[43]  Michael E. Hoffman,et al.  Quasi-Shuffle Products , 1999 .

[44]  J. Henn Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.

[45]  F. Tkachov,et al.  The FORM version of MINCER , 1991 .

[46]  Carsten Schneider,et al.  Recent Symbolic Summation Methods to Solve Coupled Systems of Differential and Difference Equations , 2014, ArXiv.

[47]  E. Remiddi,et al.  Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral , 2016, 1602.01481.

[48]  Jakob Ablinger,et al.  The package HarmonicSums: Computer Algebra and Analytic aspects of Nested Sums , 2014, ArXiv.

[49]  Carsten Schneider,et al.  Representing ($q$-)hypergeometric products and mixed versions in difference rings , 2017, ArXiv.

[50]  Carsten Schneider,et al.  A difference ring theory for symbolic summation☆ , 2014, J. Symb. Comput..

[51]  J. Blumlein,et al.  Heavy quark form factors at two loops , 2017, 1712.09889.

[52]  J. Blumlein,et al.  The three-loop splitting functions Pqg(2) and Pgg(2,NF) , 2017, 1705.01508.

[53]  Differential equations for Feynman graph amplitudes , 1997, hep-th/9711188.

[54]  Manuel Kauers,et al.  Determining the closed forms of the O(sS3) anomalous dimensions and Wilson coefficients from Mellin moments by means of computer algebra , 2009, Comput. Phys. Commun..

[55]  Carsten Schneider,et al.  Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials , 2011, ArXiv.

[56]  S. Weinzierl,et al.  The iterated structure of the all-order result for the two-loop sunrise integral , 2015, 1512.05630.

[57]  Carsten Schneider,et al.  Representing ($$\varvec{}$$–)Hypergeometric Products and Mixed Versions in Difference Rings , 2016 .

[58]  Michael F. Singer,et al.  Solving Difference Equations in Finite Terms , 1999, J. Symb. Comput..

[59]  Mark van Hoeij,et al.  Finite singularities and hypergeometric solutions of linear recurrence equations , 1999 .

[60]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[61]  F. Tkachov,et al.  Mincer: Program for multiloop calculations in quantum field theory for the Schoonschip system , 1989 .

[62]  Carsten Schneider,et al.  Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.

[63]  J. Ablinger Computing the Inverse Mellin Transform of Holonomic Sequences using Kovacic's Algorithm , 2018, ArXiv.

[64]  Mark van Hoeij,et al.  Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams , 2017, Journal of Mathematical Physics.

[65]  Carsten Schneider,et al.  Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra , 2015, Comput. Phys. Commun..

[66]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[67]  A. Vogt,et al.  The Three-Loop Splitting Functions in QCD: The Non-Singlet Case , 2004, hep-ph/0403192.

[68]  S. Kurth,et al.  Harmonic sums and Mellin transforms up to two-loop order , 1999 .

[69]  J. Blumlein,et al.  The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3) , 2014, 1402.0359.