Embedding theorems for variable exponent fractional Sobolev spaces and an application
暂无分享,去创建一个
[1] N. Laskin. Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] J. Rossi,et al. Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians , 2017 .
[3] J. Rossi,et al. Traces for fractional Sobolev spaces with variable exponents , 2017, 1704.02599.
[4] Yun-Ho Kim,et al. A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractionalp(⋅)-Laplacian , 2018, Nonlinear Analysis.
[5] I. Ekeland. On the variational principle , 1974 .
[6] P. Koskela,et al. Sobolev embeddings, extensions and measure density condition , 2008 .
[7] Jiří Rákosník,et al. Sobolev embeddings with variable exponent , 2000 .
[8] P. Hästö,et al. Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .
[9] Enrico Valdinoci,et al. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian , 2012, 1202.0576.
[10] P. Rabinowitz,et al. Dual variational methods in critical point theory and applications , 1973 .
[11] A. Baalal,et al. Traces and fractional Sobolev extension domains with variable exponent , 2018 .
[12] Anouar Bahrouni. Comparison and sub-supersolution principles for the fractional p(x)-Laplacian , 2018 .
[13] Qihu Zhang,et al. Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .
[14] Yongqiang Fu,et al. The principle of concentration compactness in Lp(x) spaces and its application , 2009 .
[15] M. Shimi,et al. On a class of fractional p(x) -Kirchhoff type problems , 2019, Applicable Analysis.
[16] Xianling Fan,et al. On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .
[17] E. Valdinoci,et al. Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.
[18] Alberto Fiorenza,et al. Variable Lebesgue Spaces: Foundations and Harmonic Analysis , 2013 .
[19] Mingqi Xiang,et al. Multiplicity results for variable-order fractional Laplacian equations with variable growth , 2019, Nonlinear Analysis.
[20] M. Sini,et al. An $$H^{s,p}(\text {curl};\varOmega )$$Hs,p(curl;Ω) estimate for the Maxwell system , 2016 .
[21] N. T. Chung. Eigenvalue Problems for Fractional $p(x,y)$-Laplacian Equations with Indefinite Weight , 2019, Taiwanese Journal of Mathematics.
[22] Yongqiang Fu,et al. On the variable exponential fractional Sobolev space Ws(·),p(·) , 2020, AIMS Mathematics.
[23] Sweta Tiwari,et al. Variable order nonlocal Choquard problem with variable exponents , 2019, Complex Variables and Elliptic Equations.
[24] Yunmei Chen,et al. Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..
[25] Yongqiang Fu,et al. Existence of solutions for p(x)-Laplacian problems on a bounded domain , 2005 .
[26] W. Orlicz,et al. Über konjugierte Exponentenfolgen , 1931 .
[27] Jiří Rákosník,et al. On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .
[28] Yuan Zhou,et al. Fractional Sobolev extension and imbedding , 2014 .
[29] N. Laskin. Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.
[30] Lars Diening,et al. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , 2004 .
[31] Vicentiu D. Rădulescu,et al. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent , 2017 .
[32] A. Quaas,et al. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[33] M. Sini,et al. An $H^{s,p}(\curl;\Omega)$ estimate for the Maxwell system , 2014, 1408.2203.
[34] Alberto Fiorenza,et al. Variable Lebesgue Spaces , 2013 .
[35] M. Shimi,et al. Eigenvalue problems involving the fractional $p(x)$-Laplacian operator , 2019, Advances in Operator Theory.
[36] Yi Cheng,et al. Variable-order fractional Sobolev spaces and nonlinear elliptic equations with variable exponents , 2020 .