Embedding theorems for variable exponent fractional Sobolev spaces and an application

[1]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. Rossi,et al.  Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians , 2017 .

[3]  J. Rossi,et al.  Traces for fractional Sobolev spaces with variable exponents , 2017, 1704.02599.

[4]  Yun-Ho Kim,et al.  A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractionalp(⋅)-Laplacian , 2018, Nonlinear Analysis.

[5]  I. Ekeland On the variational principle , 1974 .

[6]  P. Koskela,et al.  Sobolev embeddings, extensions and measure density condition , 2008 .

[7]  Jiří Rákosník,et al.  Sobolev embeddings with variable exponent , 2000 .

[8]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[9]  Enrico Valdinoci,et al.  Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian , 2012, 1202.0576.

[10]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[11]  A. Baalal,et al.  Traces and fractional Sobolev extension domains with variable exponent , 2018 .

[12]  Anouar Bahrouni Comparison and sub-supersolution principles for the fractional p(x)-Laplacian , 2018 .

[13]  Qihu Zhang,et al.  Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .

[14]  Yongqiang Fu,et al.  The principle of concentration compactness in Lp(x) spaces and its application , 2009 .

[15]  M. Shimi,et al.  On a class of fractional p(x) -Kirchhoff type problems , 2019, Applicable Analysis.

[16]  Xianling Fan,et al.  On the Spaces Lp(x)(Ω) and Wm, p(x)(Ω) , 2001 .

[17]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[18]  Alberto Fiorenza,et al.  Variable Lebesgue Spaces: Foundations and Harmonic Analysis , 2013 .

[19]  Mingqi Xiang,et al.  Multiplicity results for variable-order fractional Laplacian equations with variable growth , 2019, Nonlinear Analysis.

[20]  M. Sini,et al.  An $$H^{s,p}(\text {curl};\varOmega )$$Hs,p(curl;Ω) estimate for the Maxwell system , 2016 .

[21]  N. T. Chung Eigenvalue Problems for Fractional $p(x,y)$-Laplacian Equations with Indefinite Weight , 2019, Taiwanese Journal of Mathematics.

[22]  Yongqiang Fu,et al.  On the variable exponential fractional Sobolev space Ws(·),p(·) , 2020, AIMS Mathematics.

[23]  Sweta Tiwari,et al.  Variable order nonlocal Choquard problem with variable exponents , 2019, Complex Variables and Elliptic Equations.

[24]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[25]  Yongqiang Fu,et al.  Existence of solutions for p(x)-Laplacian problems on a bounded domain , 2005 .

[26]  W. Orlicz,et al.  Über konjugierte Exponentenfolgen , 1931 .

[27]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[28]  Yuan Zhou,et al.  Fractional Sobolev extension and imbedding , 2014 .

[29]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[30]  Lars Diening,et al.  Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , 2004 .

[31]  Vicentiu D. Rădulescu,et al.  On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent , 2017 .

[32]  A. Quaas,et al.  Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[33]  M. Sini,et al.  An $H^{s,p}(\curl;\Omega)$ estimate for the Maxwell system , 2014, 1408.2203.

[34]  Alberto Fiorenza,et al.  Variable Lebesgue Spaces , 2013 .

[35]  M. Shimi,et al.  Eigenvalue problems involving the fractional $p(x)$-Laplacian operator , 2019, Advances in Operator Theory.

[36]  Yi Cheng,et al.  Variable-order fractional Sobolev spaces and nonlinear elliptic equations with variable exponents , 2020 .