Bounded Approximations of Geodesics for Triangular Manifolds with Partially Missing Data

In this paper we present an algorithm to compute approximate geodesic distances on a triangular manifold S containing n vertices with partially missing data. The proposed method computes an approximation of the geodesic distance between two vertices pi and p j on S and provides a maximum relative error bound of the approximation. The error bound is shown to be worst-case optimal. The algorithm approximates the geodesic distance without trying to reconstruct the missing data by embedding the surface in a low dimensional space via multi-dimensional scaling (MDS). We derive a new method to add an object to the embedding computed via least-squares MDS.

[1]  Laurent D. Cohen,et al.  Geodesic Computations for Fast and Accurate Surface Remeshing and Parameterization , 2005 .

[2]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Isabelle Herlin,et al.  Geodesic distance evolution of surfaces: a new method for matching surfaces , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[4]  Ron Kimmel,et al.  Texture Mapping Using Surface Flattening via Multidimensional Scaling , 2002, IEEE Trans. Vis. Comput. Graph..

[5]  Kathleen M. Robinette,et al.  The CAESAR project: a 3-D surface anthropometry survey , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[6]  J. Gower Adding a point to vector diagrams in multivariate analysis , 1968 .

[7]  Alexander M. Bronstein,et al.  Expression-Invariant 3D Face Recognition , 2003, AVBPA.

[8]  Alexander M. Bronstein,et al.  Topologically Constrained Isometric Embedding , 2006, Human Motion.

[9]  Alexander M. Bronstein,et al.  Multigrid multidimensional scaling , 2006, Numer. Linear Algebra Appl..

[10]  Alexander M. Bronstein,et al.  Robust Expression-Invariant Face Recognition from Partially Missing Data , 2006, ECCV.

[11]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Gower Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .

[13]  Trevor F. Cox,et al.  Multidimensional Scaling, Second Edition , 2000 .

[14]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[15]  Neil A. Dodgson,et al.  Fast Marching farthest point sampling , 2003, Eurographics.

[16]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[17]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[18]  Kun Zhou,et al.  Iso-charts: stretch-driven mesh parameterization using spectral analysis , 2004, SGP '04.

[19]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Alexander M. Bronstein,et al.  Three-Dimensional Face Recognition , 2005, International Journal of Computer Vision.

[21]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Yehoshua Y. Zeevi,et al.  The farthest point strategy for progressive image sampling , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 2 - Conference B: Computer Vision & Image Processing. (Cat. No.94CH3440-5).