Implementation of Classical Communication in a Quantum World

Observations of quantum systems carried out by finite observers who subsequently communicate their results using classical data structures can be described as “local operations, classical communication” (LOCC) observations. The implementation of LOCC observations by the Hamiltonian dynamics prescribed by minimal quantum mechanics is investigated. It is shown that LOCC observations cannot be described using decoherence considerations alone, but rather require the a priori stipulation of a positive operator-valued measure (POVM) about which communicating observers agree. It is also shown that the transfer of classical information from system to observer can be described in terms of system-observer entanglement, raising the possibility that an apparatus implementing an appropriate POVM can reveal the entangled system-observer states that implement LOCC observations.

[1]  A. Arbab,et al.  A New Formulation of Quantum Mechanics , 2010, 1002.4709.

[2]  N. L. Harshman,et al.  Observables can be tailored to change the entanglement of any pure state , 2011, 1102.0955.

[3]  Maximilian Schlosshauer,et al.  Experimental motivation and empirical consistency in minimal no-collapse quantum mechanics , 2006 .

[4]  V. M. Ghete,et al.  Combined results of searches for the standard model Higgs boson in pp collisions at √s = 7 TeV , 2012 .

[5]  David Poulin,et al.  Environment as a Witness: Selective Proliferation of Information and Emergence of Objectivity in a Quantum Universe , 2004 .

[6]  C. Fuchs QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.

[7]  Max Tegmark Many Worlds in Context , 2009, 0905.2182.

[8]  W. Zurek Quantum Darwinism , 2009, 0903.5082.

[9]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[10]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[11]  N. Bohr The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.

[12]  David Wallace,et al.  Philosophy of Quantum Mechanics , 2008 .

[13]  B. Hu,et al.  Emergence: Key physical issues for deeper philosophical inquiries , 2012, 1204.1077.

[14]  Wojciech H. Zurek Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time , 1998 .

[15]  David Poulin,et al.  Objective properties from subjective quantum states: environment as a witness. , 2004, Physical review letters.

[16]  Wojciech H. Zurek,et al.  Decoherence, einselection and the existential interpretation (the rough guide) , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  S. Lloyd,et al.  Quantum tensor product structures are observable induced. , 2003, Physical Review Letters.

[18]  Chris Fields,et al.  The very same thing: Extending the object token concept to incorporate causal constraints on individual identity , 2012, Advances in cognitive psychology.

[19]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[20]  David Wallace,et al.  The Quantum Measurement Problem: State of Play , 2007, 0712.0149.

[21]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[22]  N. P. Landsman Between classical and quantum , 2005 .

[23]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Chris Fields,et al.  A model-theoretic interpretation of environment-induced superselection , 2012, Int. J. Gen. Syst..

[25]  Maximilian Schlosshauer-Selbach Decoherence and the quantum-to-classical transition , 2008 .

[26]  P. Zanardi,et al.  Virtual quantum subsystems. , 2001, Physical review letters.

[27]  Edward Farhi,et al.  Analog analogue of a digital quantum computation , 1996 .

[28]  J. T. Childers,et al.  Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[29]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[30]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[31]  E. Joos,et al.  The emergence of classical properties through interaction with the environment , 1985 .

[32]  Max Tegmark The Mathematical Universe , 2007, Foundations of Physics.

[33]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[34]  H. D. Zeh THE PROBLEM OF CONSCIOUS OBSERVATION IN QUANTUM MECHANICAL DESCRIPTION , 1999 .

[35]  George E. Newman,et al.  Tracing the Identity of Objects , 2005 .

[36]  H. Everett "Relative State" Formulation of Quantum Mechanics , 1957 .

[37]  Andrew S. Tanenbaum,et al.  Structured Computer Organization , 1976 .

[38]  B. Scholl Object Persistence in Philosophy and Psychology , 2007 .

[39]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[40]  R. Griffiths Consistent Quantum Theory , 2001 .

[41]  M. Chiara,et al.  Philosophy of quantum mechanics , 1982 .

[42]  G. Castagnoli Origin of the quantum speed-up , 2011, 1107.0934.

[43]  Wojciech Hubert Zurek,et al.  Relative States and the Environment: Einselection, Envariance, Quantum Darwinism, and the Existential Interpretation , 2007, 0707.2832.

[44]  Rolf Landauer,et al.  Information is a physical entity , 1999 .

[45]  Chris Fields,et al.  Bell's theorem from Moore's theorem , 2012, Int. J. Gen. Syst..

[46]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[47]  Chris Fields If Physics Is an Information Science, What Is an Observer? , 2012, Inf..

[48]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[49]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[50]  J. Hartle The Quasiclassical Realms of This Quantum Universe , 1994, The Quantum Universe.

[51]  R. Omnes Decoherence and Ontology , 2019, Synthese Library.

[52]  D. Goyeneche,et al.  Entanglement for all quantum states , 2010 .

[53]  W. Zurek,et al.  Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information , 2005, quant-ph/0505031.

[54]  W. Thirring,et al.  Entanglement or separability: the choice of how to factorize the algebra of a density matrix , 2011, 1106.3047.

[55]  W. Zurek Environment-induced superselection rules , 1982 .

[56]  Scott Aaronson,et al.  NP-complete Problems and Physical Reality , 2005, Electron. Colloquium Comput. Complex..