Nucleic Acid Extraction and Sequencing from Low-Biomass Synthetic Mars Analog Soils for In Situ Life Detection

Abstract Recent studies regarding the origins of life and Mars-Earth meteorite transfer simulations suggest that biological informational polymers, such as nucleic acids (DNA and RNA), have the potential to provide unambiguous evidence of life on Mars. To this end, we are developing a metagenomics-based life-detection instrument which integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG). Our goal is to isolate and sequence nucleic acids from extant or preserved life on Mars in order to determine if a particular genetic sequence (1) is distantly related to life on Earth, indicating a shared ancestry due to lithological exchange, or (2) is unrelated to life on Earth, suggesting a convergent origins of life on Mars. In this study, we validate prior work on nucleic acid extraction from cells deposited in Mars analog soils down to microbial concentrations (i.e., 104 cells in 50 mg of soil) observed in the driest and coldest regions on Earth. In addition, we report low-input nanopore sequencing results from 2 pg of purified Bacillus subtilis spore DNA simulating ideal extraction yields equivalent to 1 ppb life-detection sensitivity. We achieve this by employing carrier sequencing, a method of sequencing sub-nanogram DNA in the background of a genomic carrier. After filtering of carrier, low-quality, and low-complexity reads we detected 5 B. subtilis reads, 18 contamination reads (including Homo sapiens), and 6 high-quality noise reads believed to be sequencing artifacts.

[1]  A. Vasavada,et al.  Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover , 2014, Science.

[2]  Judith H. Allton,et al.  JSC-1: A New Lunar Regolith Simulant , 1993 .

[3]  Dejan-Krešimir Bučar,et al.  Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides , 2017, Nature Communications.

[4]  Mark T. Lemmon,et al.  Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission , 2014 .

[5]  T. Wood,et al.  IS5 inserts upstream of the master motility operon flhDC in a quasi-Lamarckian way , 2011, The ISME Journal.

[6]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[7]  K. Gates An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. , 2009, Chemical research in toxicology.

[8]  N. Taylor,et al.  DNA extraction from low-biomass carbonate rock: an improved method with reduced contamination and the low-biomass contaminant database. , 2006, Journal of microbiological methods.

[9]  C. Lange,et al.  Quantification of Ploidy in Proteobacteria Revealed the Existence of Monoploid, (Mero-)Oligoploid and Polyploid Species , 2011, PloS one.

[10]  Michael Y. Galperin,et al.  Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. , 1999, Genome research.

[11]  J. Sutherland,et al.  Prebiotic synthesis of simple sugars by photoredox systems chemistry. , 2012, Nature chemistry.

[12]  S. Shankar Sastry,et al.  Modeling Subtilin Production in Bacillus subtilis Using Stochastic Hybrid Systems , 2004, HSCC.

[13]  J. Tiedje,et al.  DNA recovery from soils of diverse composition , 1996, Applied and environmental microbiology.

[14]  Karen M. Jager,et al.  Martian Regolith Simulant JSC Mars-1 , 1998 .

[15]  Christopher E. Carr,et al.  Towards in situ sequencing for life detection , 2017, 2017 IEEE Aerospace Conference.

[16]  David M. Lambert,et al.  Ancient DNA: Towards a million-year-old genome , 2013, Nature.

[17]  G. J. Taylor,et al.  The bulk composition of Mars , 2013 .

[18]  Bo Barker Jørgensen,et al.  A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types , 2015, Front. Microbiol..

[19]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[20]  C. Woese,et al.  Conservation of primary structure in 16S ribosomal RNA , 1975, Nature.

[21]  Lorraine Schnabel,et al.  Chemical composition of Martian fines , 1982 .

[22]  G. Reitz,et al.  Roles of Small, Acid-Soluble Spore Proteins and Core Water Content in Survival of Bacillus subtilis Spores Exposed to Environmental Solar UV Radiation , 2009, Applied and Environmental Microbiology.

[23]  Y. Sanz,et al.  Species-level resolution of 16S rRNA gene amplicons sequenced through the MinION™ portable nanopore sequencer , 2015, bioRxiv.

[24]  Andrew C. Schuerger,et al.  Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions , 2012 .

[25]  Andrew C Schuerger,et al.  Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions. , 2011, Astrobiology.

[26]  William H. Farrand,et al.  Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars , 2006 .

[27]  D. Sasselov,et al.  Atmospheric Constraints on the Surface UV Environment of Mars at 3.9 Ga Relevant to Prebiotic Chemistry. , 2017, Astrobiology.

[28]  Robert Doebler,et al.  Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station , 2017, PloS one.

[29]  Paul Monis,et al.  Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. , 2014, International journal for parasitology.

[30]  James W. Head,et al.  The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system , 2014, Antarctic Science.

[31]  Gary Ruvkun,et al.  Sequencing nothing: Exploring failure modes of nanopore sensing and implications for life detection. , 2018, Life sciences in space research.

[32]  T. M. Harrison,et al.  Illusory Late Heavy Bombardments , 2016, Proceedings of the National Academy of Sciences.

[33]  G. Church,et al.  The Most Conserved Genome Segments for Life Detection on Earth and Other Planets , 2008, Origins of Life and Evolution of Biospheres.

[34]  G. Ruvkun,et al.  Nucleic Acid Extraction and Sequencing from Low-Biomass Synthetic Mars Analog Soils for In Situ Life Detection , 2017, bioRxiv.

[35]  S. Mojzsis,et al.  Microbial habitability of the Hadean Earth during the late heavy bombardment , 2009, Nature.

[36]  E. Boyle,et al.  On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing , 1992 .

[37]  N. Pace,et al.  The genetic core of the universal ancestor. , 2003, Genome research.

[38]  Anders Krogh,et al.  Fast and sensitive taxonomic classification for metagenomics with Kaiju , 2016, Nature Communications.

[39]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[40]  G. Ruvkun,et al.  Nucleic Acid Sequencing Under Mars-Like Conditions , 2019, 2019 IEEE Aerospace Conference.

[41]  Tomáš Vinař,et al.  DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads , 2016, PloS one.

[42]  G. Horneck,et al.  Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. , 2008, Astrobiology.

[43]  Lyle G. Whyte,et al.  In Situ Field Sequencing and Life Detection in Remote (79°26′N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities , 2017, Front. Microbiol..

[44]  H. V. Lauer,et al.  Mars 2007 Phoenix Scout mission Organic Free Blank: Method to distinguish Mars organics from terrestrial organics , 2008 .

[45]  R. Franklin,et al.  MinION TM nanopore sequencing of environmental metagenomes: a synthetic approach , 2017 .

[46]  M. Shakya,et al.  Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments , 2014, PloS one.

[47]  H. Steen,et al.  Timing of initiation of chromosome replication in individual Escherichia coli cells. , 1986, The EMBO journal.

[48]  Mark Brown,et al.  Advancing the search for extra-terrestrial genomes , 2016, 2016 IEEE Aerospace Conference.

[49]  R. Turner,et al.  Driving Forces for DNA Adsorption to Silica in Perchlorate Solutions , 1996 .

[50]  J. Korlach,et al.  Preparation of next-generation DNA sequencing libraries from ultra-low amounts of input DNA: Application to single-molecule, real-time (SMRT) sequencing on the Pacific Biosciences RS II , 2014, bioRxiv.

[51]  N. Matsumoto,et al.  An Improved DNA Extraction Method Using Skim Milk from Soils That Strongly Adsorb DNA , 2004 .

[52]  A. Brack,et al.  Life on Mars: chemical arguments and clues from Martian meteorites , 1998, Extremophiles.

[53]  Carol R. Stoker,et al.  Habitability of the Phoenix landing site , 2010 .

[54]  J. Bada,et al.  Radiation-Dependent Limit for the Viability of Bacterial Spores in Halite Fluid Inclusions and on Mars , 2003, Radiation research.

[55]  Gerhard Kminek,et al.  The effect of ionizing radiation on the preservation of amino acids on Mars , 2006 .

[56]  Anthony W. Friedline,et al.  Sterilization of hydrogen peroxide resistant bacterial spores with stabilized chlorine dioxide , 2015, AMB Express.

[57]  Jesse Dabney,et al.  Ancient DNA damage. , 2013, Cold Spring Harbor perspectives in biology.

[58]  J. Szostak,et al.  Chemoselective Multicomponent One-Pot Assembly of Purine Precursors in Water , 2010, Journal of the American Chemical Society.

[59]  Christopher P McKay,et al.  Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica , 2016, The ISME Journal.

[60]  M. P. Greaves,et al.  The adsorption of nucleic acids by montmorillonite , 1969 .

[61]  Alejandro A. Schäffer,et al.  A Fast and Symmetric DUST Implementation to Mask Low-Complexity DNA Sequences , 2006, J. Comput. Biol..

[62]  Doug Stryke,et al.  Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis , 2015, Genome Medicine.

[63]  Simak Ali,et al.  Nucleic acid sequencing , 2019, Nature Biotechnology.

[64]  Christopher E. Carr,et al.  Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection , 2017, Astrobiology.

[65]  K. Konstantinidis,et al.  Strengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics , 2014, PloS one.

[66]  J. Rummel,et al.  Inadvertently Finding Earth Contamination on Mars Should Not Be a Priority for Anyone. , 2018, Astrobiology.

[67]  D. Sasselov,et al.  Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry. , 2016, Astrobiology.

[68]  C. McKay,et al.  An origin of life on Mars. , 2010, Cold Spring Harbor perspectives in biology.

[69]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[70]  B. Weiss,et al.  Martian Surface Paleotemperatures from Thermochronology of Meteorites , 2005, Science.

[71]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[72]  Claudia Percivalle,et al.  Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. , 2015, Nature Chemistry.

[73]  P. Marlière,et al.  Probing Ambiguous Base‐Pairs by Genetic Transformation with XNA Templates , 2014, Chembiochem : a European journal of chemical biology.

[74]  J. Bada,et al.  The Miller Volcanic Spark Discharge Experiment , 2008, Science.

[75]  C. McKay,et al.  Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. , 2003, Icarus.

[76]  S. Linn,et al.  DNA damage and oxygen radical toxicity. , 1988, Science.

[77]  Y. Sanz,et al.  Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore sequencer , 2015, bioRxiv.

[78]  Alan W. Schwartz,et al.  Extraterrestrial nucleobases in the Murchison meteorite , 2008 .

[79]  J. Trevors DNA in soil: adsorption, genetic transformation, molecular evolution and genetic microchip , 1996, Antonie van Leeuwenhoek.

[80]  S. Ruff,et al.  Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile , 2016, Nature Communications.

[81]  W. Röling,et al.  Sensitive life detection strategies for low-biomass environments: optimizing extraction of nucleic acids adsorbing to terrestrial and Mars analogue minerals. , 2012, FEMS microbiology ecology.

[82]  Charles H Lineweaver,et al.  An extensive phase space for the potential martian biosphere. , 2011, Astrobiology.

[83]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[84]  E. Hausrath,et al.  Readily available phosphate from minerals in early aqueous environments on Mars , 2013 .

[85]  Steven Jacobson,et al.  Digital droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patients and identification of viral mutations , 2014, Journal of NeuroVirology.

[86]  Angela M Yu,et al.  Nanopore sequencing in microgravity , 2015, npj Microgravity.

[87]  J. Leamon,et al.  Bias in Whole Genome Amplification: Causes and Considerations. , 2015, Methods in molecular biology.

[88]  J P Wikswo,et al.  A low temperature transfer of ALH84001 from Mars to Earth. , 2000, Science.

[89]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[90]  Rudolf Rieder,et al.  Chemical Composition of Rocks and Soils at the Pathfinder Site , 2001 .

[91]  Douglas J. Botkin,et al.  Nanopore DNA Sequencing and Genome Assembly on the International Space Station , 2016, bioRxiv.

[92]  Joshua Quick,et al.  Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella , 2015, Genome Biology.

[93]  J. Sutherland,et al.  Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.

[94]  D. Ming,et al.  Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .

[95]  D. Ming,et al.  Biotoxicity of Mars soils: 2. Survival of Bacillus subtilis and Enterococcus faecalis in aqueous extracts derived from six Mars analog soils , 2017 .

[96]  M. Raymo,et al.  Tectonic forcing of late Cenozoic climate , 1992, Nature.

[97]  Maria T. Zuber,et al.  CarrierSeq: a sequence analysis workflow for low-input nanopore sequencing , 2017, bioRxiv.

[98]  Yuji Tazawa,et al.  Chemical composition of , 1970 .

[99]  Francesca Giordano,et al.  Oxford Nanopore MinION Sequencing and Genome Assembly , 2016, Genom. Proteom. Bioinform..

[100]  M. Walter,et al.  Extraction of DNA from Acidic, Hydrothermally Modified Volcanic Soils , 2006 .

[101]  Antonio Lazcano,et al.  Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment , 2011, Proceedings of the National Academy of Sciences.

[102]  Christopher P. McKay,et al.  Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life , 2003, Science.

[103]  G. Reitz,et al.  Protective Role of Spore Structural Components in Determining Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions , 2012, Applied and Environmental Microbiology.

[104]  D. Ming,et al.  Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate , 2008 .

[105]  Rachael E. Workman,et al.  Detecting DNA Methylation using the Oxford Nanopore Technologies MinION sequencer , 2016, bioRxiv.

[106]  Charles S Cockell,et al.  Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. , 2007, Journal of microbiological methods.

[107]  Steven A. Benner,et al.  The case for a Martian origin for Earth life , 2015, SPIE Optical Engineering + Applications.

[108]  Jun Li,et al.  Highly efficient adsorption of DNA on Fe3+–iminodiacetic acid modified silica particles , 2012 .