Accretion-powered Stellar Winds. II. Numerical Solutions for Stellar Wind Torques

In order to explain the slow rotation observed in a large fraction of accreting pre-main-sequence stars (CTTSs), we explore the role of stellar winds in torquing down the stars. For this mechanism to be effective, the stellar winds need to have relatively high outflow rates, and thus would likely be powered by the accretion process itself. Here, we use numerical magnetohydrodynamical simulations to compute detailed two-dimensional (axisymmetric) stellar wind solutions, in order to determine the spin-down torque on the star. We discuss wind driving mechanisms and then adopt a Parker-like (thermal pressure driven) wind, modified by rotation, magnetic fields, and enhanced mass-loss rate (relative to the Sun). We explore a range of parameters relevant for CTTSs, including variations in the stellar mass, radius, spin rate, surface magnetic field strength, mass-loss rate, and wind acceleration rate. We also consider both dipole and quadrupole magnetic field geometries. Our simulations indicate that the stellar wind torque is of sufficient magnitude to be important for spinning down a “typical” CTTS, for a mass-loss rate of ~10−9 M☉ yr−1. The winds are wide-angle, self-collimated flows, as expected of magnetic rotator winds with moderately fast rotation. The cases with quadrupolar field produce a much weaker torque than for a dipole with the same surface field strength, demonstrating that magnetic geometry plays a fundamental role in determining the torque. Cases with varying wind acceleration rate show much smaller variations in the torque, suggesting that the details of the wind driving are less important. We use our computed results to fit a semianalytic formula for the effective Alfvén radius in the wind, as well as the torque. This allows for considerable predictive power, and is an improvement over existing approximations.

[1]  G. Belle 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun , 2008 .

[2]  L. Cieza,et al.  Testing the Disk Regulation Paradigm with Spitzer Observations. II. A Clear Signature of Star-Disk Interaction in NGC 2264 and the Orion Nebula Cluster , 2007, 0707.4509.

[3]  R. Pudritz,et al.  The nature of stellar winds in the star-disk interaction , 2007, Proceedings of the International Astronomical Union.

[4]  Christopher M. Johns-Krull,et al.  The Magnetic Fields of Classical T Tauri Stars , 2007, 0704.2923.

[5]  S. Cranmer,et al.  Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence , 2007, astro-ph/0703333.

[6]  T. Ray,et al.  Further Indications of Jet Rotation in New Ultraviolet and Optical Hubble Space Telescope STIS Spectra , 2007, astro-ph/0703271.

[7]  S. Edwards,et al.  Modeling T Tauri Winds from He I λ10830 Profiles , 2006, astro-ph/0611585.

[8]  Anthony Allen,et al.  A Unified Model for Bipolar Outflows from Young Stars , 2006, The Astrophysical Journal.

[9]  J. Valenti,et al.  Spectropolarimetry of the Classical T Tauri Star TW Hydrae , 2006, astro-ph/0609289.

[10]  G. Herczeg,et al.  How Hot is the Wind from TW Hydrae? , 2006, astro-ph/0609239.

[11]  Tim J. Harries,et al.  On the formation of Hα line emission around classical T Tauri stars , 2006, astro-ph/0605234.

[12]  S. Cabrit,et al.  Which jet launching mechanism(s) in T Tauri stars , 2006, astro-ph/0604053.

[13]  L. Hillenbrand,et al.  Probing T Tauri Accretion and Outflow with 1 Micron Spectroscopy , 2006, astro-ph/0604006.

[14]  T. Inutsuka Solar winds driven by nonlinear low‐frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds , 2005, astro-ph/0511006.

[15]  R. Pudritz,et al.  Accretion-powered Stellar Winds as a Solution to the Stellar Angular Momentum Problem , 2005, astro-ph/0510060.

[16]  E. Feigelson,et al.  Bright X-Ray Flares in Orion Young Stars from COUP: Evidence for Star-Disk Magnetic Fields? , 2005, astro-ph/0506134.

[17]  J. Strader,et al.  A Hot Wind from the Classical T Tauri Stars: TW Hydrae and T Tauri , 2005, astro-ph/0505037.

[18]  R. Pudritz,et al.  The spin of accreting stars: dependence on magnetic coupling to the disc , 2004, astro-ph/0409701.

[19]  Sean Matt,et al.  Simultaneous Production of Disk and Lobes: A Single-Wind MHD Model for the η Carinae Nebula , 2004, astro-ph/0408034.

[20]  S. Fabrika,et al.  Possible variability of the magnetic field of T Tau , 2004 .

[21]  K. Stassun,et al.  X-Ray Properties of Pre-Main-Sequence Stars in the Orion Nebula Cluster with Known Rotation Periods , 2004, astro-ph/0403159.

[22]  L. Rebull,et al.  Stellar Rotation in Young Clusters: The First 4 Million Years , 2004 .

[23]  T. Ray,et al.  Rotation of Jets from Young Stars: New Clues from the Hubble Space Telescope Imaging Spectrograph , 2003, astro-ph/0312300.

[24]  L. Hillenbrand,et al.  He I λ10830 as a Probe of Winds in Accreting Young Stars , 2003, astro-ph/0311289.

[25]  R. Blandford,et al.  Locating the Launching Region of T Tauri Winds: The Case of DG Tauri , 2003, astro-ph/0304127.

[26]  S. Fabrika,et al.  Measurement of the longitudinal magnetic-field component for FU Ori , 2003 .

[27]  S. Barnes On the Rotational Evolution of Solar- and Late-Type Stars, Its Magnetic Origins, and the Possibility of Stellar Gyrochronology , 2003, astro-ph/0303631.

[28]  G. G. Valyavin,et al.  Possible detection of a magnetic field in T Tauri , 2003, astro-ph/0302026.

[29]  T. Ray,et al.  HST/STIS Spectroscopy of the Optical Outflow from DG Tau: Indications for Rotation in the Initial Jet Channel , 2002, astro-ph/0206175.

[30]  K. Tsinganos,et al.  Nonradial and nonpolytropic astrophysical outflows - V. Acceleration and collimation of self-similar winds , 2002, astro-ph/0205203.

[31]  C. Johns–Krull,et al.  New Tests of Magnetospheric Accretion in T Tauri Stars , 2002, astro-ph/0205190.

[32]  Coryn A. L. Bailer-Jones,et al.  Stellar rotation and variability in the Orion Nebula Cluster , 2002 .

[33]  R. Makidon,et al.  The Early Angular Momentum History of Low-Mass Stars: Evidence for a Regulation Mechanism , 2002, astro-ph/0203384.

[34]  Adam Frank,et al.  Stellar Outflows Driven by Magnetized Wide-Angle Winds , 2002, astro-ph/0202243.

[35]  S. Owocki,et al.  Dynamical Simulations of Magnetically Channeled Line-driven Stellar Winds. I. Isothermal, Nonrotating, Radially Driven Flow , 2002, astro-ph/0201195.

[36]  J. Bally,et al.  HERBIG-HARO FLOWS: Probes of Early Stellar Evolution , 2001 .

[37]  K. Tsinganos,et al.  Magnetically collimated jets with high mass flux , 2001, astro-ph/0102250.

[38]  K. Stassun,et al.  A 10 Micron Search for Truncated Disks Among Pre-Main-Sequence Stars with Photometric Rotation Periods , 2000, astro-ph/0010657.

[39]  J. P. Goedbloed,et al.  Stellar Winds, Dead Zones, and Coronal Mass Ejections , 1999, astro-ph/9910152.

[40]  L. Hillenbrand,et al.  Rotation in the Orion Nebula Cluster , 1999, astro-ph/9909427.

[41]  E. Feigelson,et al.  High-Energy Processes in Young Stellar Objects , 1999 .

[42]  Keivan G. Stassun,et al.  The Rotation Period Distribution of Pre-Main-Sequence Stars in and around the Orion Nebula , 1999 .

[43]  B. Barraclough,et al.  Ion energy equation for the high-speed solar wind : Ulysses observations , 1998 .

[44]  B. Reipurth,et al.  H emission in pre-main sequence stars. I. An atlas of line profiles , 1996 .

[45]  S. Sofia,et al.  On the Origin of the Ultrafast Rotators in Young Star Clusters , 1996 .

[46]  H. Washimi,et al.  Thermo–centrifugal wind from a rotating magnetic dipole , 1993 .

[47]  R. Pudritz,et al.  Hydromagnetic disk winds in young stellar objects and active galactic nuclei , 1992 .

[48]  C. Tout,et al.  Spin-down of rapidly rotating, convective stars. , 1992 .

[49]  K. Macgregor,et al.  Rotational Evolution of Solar-Type Stars. I. Main-Sequence Evolution , 1991 .

[50]  A. Koenigl Disk accretion onto magnetic T Tauri stars , 1991 .

[51]  M. Pinsonneault,et al.  Evolutionary models of the rotating sun , 1989 .

[52]  L. Hartmann,et al.  Additional measurements of pre-main-sequence stellar rotation , 1989 .

[53]  S. Kawaler Angular momentum loss in low-mass stars , 1988 .

[54]  H. Spruit,et al.  On magnetic braking of late-type stars , 1987 .

[55]  T. Holzer,et al.  Alfvén waves in stellar winds , 1983 .

[56]  D. Soderblom Rotational studies of late-type stars. II: Ages of solar-type stars and the rotational history of the Sun , 1983 .

[57]  L. Hartmann,et al.  Wave-driven winds from cool stars. II - Models for T Tauri stars , 1982 .

[58]  L. Hartmann,et al.  Protostellar Mass and Angular Momentum Loss , 1982 .

[59]  S. Vogel,et al.  Rotational velocities of pre-main-sequence stars. , 1981 .

[60]  W. DeCampli T Tauri winds , 1981 .

[61]  L. Hartmann,et al.  Momentum and energy deposition in late-type stellar atmospheres and winds , 1980 .

[62]  J. Belcher,et al.  Magnetic acceleration of winds from solar-type stars , 1976 .

[63]  I. Okamoto Magnetic braking by a stellar wind. IV. The effect of different poloidal field structures , 1974 .

[64]  A. Skumanich,et al.  TIME SCALES FOR Ca II EMISSION DECAY, ROTATIONAL BRAKING, AND LITHIUM DEPLETION. , 1971 .

[65]  F. Michel Relativistic stellar-wind torques , 1969 .

[66]  L. Mestel Magnetic Braking by a Stellar Wind—II , 1968 .

[67]  L. Davis,et al.  The angular momentum of the solar wind. , 1967 .

[68]  Nelson Hart O.F.M. Cap Bishop Sheen's television techniques , 1962 .

[69]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[70]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[71]  Immo Appenzeller,et al.  Star-disk interaction in young stars : proceedings of the 243th symposium of the International Astronomical Union held in Grenoble, France, May 21-25, 2007 , 2007 .

[72]  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 12/14/05 STRUCTURED RED GIANT WINDS WITH MAGNETIZED HOT BUBBLES AND THE CORONA/COOL WIND DIVIDING LINE , 2006 .

[73]  K. Rice,et al.  Protostars and Planets V , 2005 .

[74]  Jianke Li Magnetic braking of the present Sun , 1999 .

[75]  J. Valenti,et al.  Spectropolarimetry of Magnetospheric Accretion on the Classical T Tauri Star BP Tauri , 1998 .

[76]  T. Sakurai,et al.  A simulation study of the solar wind including the solar rotation effect , 1993 .

[77]  L. Hartmann,et al.  Winds from T Tauri stars. I: Spherically symmetric models , 1990 .

[78]  R. Kopp,et al.  Gas-magnetic field interactions in the solar corona , 1971 .

[79]  R. P. Kraft,et al.  STUDIES OF STELLAR ROTATION. V. THE DEPENDENCE OF ROTATION ON AGE AMONG SOLAR-TYPE STARS. , 1967 .