Entropy Optimization Filtering for Fault Isolation of Nonlinear Non-Gaussian Stochastic Systems

In this paper, the fault isolation (FI) problem is investigated for nonlinear non-Gaussian systems with multiple faults(or abrupt changes of system parameters) in the presence of noises. By constructing a filter to estimate the states, the FI problem can be reduced to an entropy optimization problem subjected to the non-Gaussian estimation error systems. The design objective for the FI purpose is that the entropy of the estimation error is maximized in the presence of diagnosed fault and is minimized in the presence of the nuisance faults or noises. It is shown that the error dynamics is represented by a nonlinear non-Gaussian stochastic system, for which new relationships are applied to formulate the probability density functions (PDFs) of the stochastic error in terms of the PDFs of the noises and the faults. The Renyi's entropy has been used to simplify the computations in the filtering for the recursive design algorithms. It is noted that the output can be supposed to be immeasurable (but with known stochastic distributions), which is different from the existing results where the output is always measurable for feedback. Finally, simulations are given to demonstrate the effectiveness of the proposed data-driven FI filtering algorithms.

[1]  Hong Wang,et al.  Fault detection and diagnosis for general stochastic systems using B-spline expansions and nonlinear filters , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Hong Wang,et al.  Applying observer based FDI techniques to detect faults in dynamic and bounded stochastic distributions , 2000 .

[3]  Michio Nakano,et al.  High Accuracy Control of a Proton Synchrotron Magnet Power Supply , 1981 .

[4]  Rolf Isermann,et al.  Trends in the Application of Model Based Fault Detection and Diagnosis of Technical Processes , 1996 .

[5]  K. Loparo,et al.  Active probing for information in control systems with quantized state measurements: a minimum entropy approach , 1997, IEEE Trans. Autom. Control..

[6]  Stephen P. Banks,et al.  Multi-periodic repetitive control system: a Lyapunov stability analysis for MIMO systems , 2004 .

[7]  P. Frank,et al.  Survey of robust residual generation and evaluation methods in observer-based fault detection systems , 1997 .

[8]  Hong Wang,et al.  Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[9]  Mehrdad Saif,et al.  Fault detection and accommodation in nonlinear time-delay systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[10]  Jason L. Speyer,et al.  Optimal stochastic fault detection filter , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[11]  Lei Guo,et al.  Minimum entropy filtering for multivariate stochastic systems with non-Gaussian noises , 2005, Proceedings of the 2005, American Control Conference, 2005..

[12]  Michèle Basseville,et al.  FAULT ISOLATION FOR DIAGNOSIS: NUISANCE REJECTION AND MULTIPLE HYPOTHESES TESTING , 2002 .

[13]  Hong Wang,et al.  Recent Developments in Stochastic Distribution Control/A Review , 2003 .

[14]  Ali Saberi,et al.  Optimal fault signal estimation , 2002 .

[15]  Hong Wang,et al.  Fault detection for non-linear non-Gaussian stochastic systems using entropy optimization principle , 2006 .

[16]  P. Jones,et al.  A Diary on Information Theory , 1989 .

[17]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[18]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[19]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[20]  Brian D. O. Anderson,et al.  Discrete positive-real fu nctions and their applications to system stability , 1969 .