A convolutional neural network-based screening tool for X-ray serial crystallography

Deep learning provides one possible avenue to reduce the data stream generated by serial macromolecular X-ray crystallography. Convolutional neural networks can be trained to recognize the presence or absence of Bragg spots, forming a criterion to veto events prior to downstream data processing.

[1]  William E. White,et al.  Free-electron Lasers , 2022 .

[2]  Nicholas K Sauter,et al.  High-speed fixed-target serial virus crystallography , 2017, Nature Methods.

[3]  Gwyndaf Evans,et al.  DIALS: implementation and evaluation of a new integration package , 2018, Acta crystallographica. Section D, Structural biology.

[4]  Sven Herrmann,et al.  CSPAD upgrades and CSPAD V1.5 at LCLS , 2014 .

[5]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[6]  Uwe Bergmann,et al.  Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers , 2017, Nature Methods.

[7]  Andrew S. Cassidy,et al.  Convolutional networks for fast, energy-efficient neuromorphic computing , 2016, Proceedings of the National Academy of Sciences.

[8]  Aurélien Géron,et al.  Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems , 2017 .

[9]  Charudatta Phatak,et al.  A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography. , 2017, Journal of synchrotron radiation.

[10]  Nicholas K. Sauter,et al.  New Python-based methods for data processing , 2013, Acta crystallographica. Section D, Biological crystallography.

[11]  Sébastien Boutet,et al.  Nanoflow electrospinning serial femtosecond crystallography. , 2012, Acta crystallographica. Section D, Biological crystallography.

[12]  Zhirong Huang,et al.  X-Ray Free Electron Lasers: Applications in Materials, Chemistry and Biology , 2017 .

[13]  F. Maia The Coherent X-ray Imaging Data Bank , 2012, Nature Methods.

[14]  Yoshiki Tanaka,et al.  Grease matrix as a versatile carrier of proteins for serial crystallography , 2014, Nature Methods.

[15]  C. Spahn,et al.  The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre , 2011, Nature.

[16]  J. Holton,et al.  The point-spread function of fiber-coupled area detectors , 2012, Journal of synchrotron radiation.

[17]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[18]  Sébastien Boutet,et al.  The CSPAD megapixel x-ray camera at LCLS , 2012, Other Conferences.

[19]  A. Berntson,et al.  Application of a neural network in high-throughput protein crystallography. , 2003, Journal of synchrotron radiation.

[20]  Jesse B. Hopkins,et al.  Figures and figure supplements Mapping the conformational landscape of a dynamic enzyme by multitemperature and XFEL crystallography , 2016 .

[21]  Sébastien Boutet,et al.  Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers , 2014, Nature Methods.

[22]  T. J. Lane,et al.  Data systems for the Linac coherent light source , 2016, Advanced Structural and Chemical Imaging.

[23]  Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays , 2017, FPGA.

[24]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[25]  Anton Barty,et al.  Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data , 2014, Journal of applied crystallography.

[26]  Marcin Sikorski,et al.  Structure of photosystem II and substrate binding at room temperature , 2016, Nature.

[27]  Nicholas K. Sauter,et al.  IOTA: integration optimization, triage and analysis tool for the processing of XFEL diffraction images1 , 2016, Journal of applied crystallography.

[28]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[29]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[30]  Sébastien Boutet,et al.  Concentric-Flow Electrokinetic Injector Enables Serial Crystallography of Ribosome and Photosystem-II , 2015, Nature Methods.

[31]  B. McNeil,et al.  X-ray free-electron lasers , 2010 .

[32]  U. Bergmann,et al.  X-Ray Free Electron Lasers: Applications in Materials, Chemistry and Biology , 2017 .

[33]  Nicholas K. Sauter,et al.  Automated diffraction image analysis and spot searching for high-throughput crystal screening , 2006 .

[34]  Sébastien Boutet,et al.  Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode , 2012, Proceedings of the National Academy of Sciences.

[35]  Shawn Osier,et al.  X-ray detectors at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[36]  Sébastien Boutet,et al.  The New Macromolecular Femtosecond Crystallography (MFX) Instrument at LCLS , 2016, Synchrotron radiation news.

[37]  Sébastien Boutet,et al.  The Coherent X-ray Imaging instrument at the Linac Coherent Light Source , 2015, Journal of synchrotron radiation.

[38]  U Weierstall,et al.  Injector for scattering measurements on fully solvated biospecies. , 2012, The Review of scientific instruments.